Cullen H. Blake

Learn More
The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular,(More)
The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation(More)
We present extensive early photometric (UBV RrIiJHKs) and spectroscopic (optical and nearinfrared) data on supernova (SN) 2008D as well as X-ray data on the associated X-ray transient (XRT) 080109 which was serendipitously discovered in Swift data during follow-up observations of SN Ib 2007uy in the same galaxy, NGC 2770. Our data span a time range of 2(More)
The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of(More)
We present high angular resolution observations with the Keck Interferometer, high dispersion spectroscopic observations with Keck/NIRSPEC, and near-IR photometric observations from PAIRITEL of a sample of 11 solar-type T Tauri stars in 9 systems. We use these observations to probe the circumstellar material within 1 AU of these young stars, measuring the(More)
One of the most promising methods of discovering nearby, low-mass planets in the habitable zones of stars is the precision radial velocity technique. However, there are many challenges that must be overcome to efficiently detect low-amplitude Doppler signals. This is both due to the required instrumental sensitivity and the limited amount of observing time.(More)
The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous(More)