Learn More
Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of(More)
The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a(More)
OBJECTIVES We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. METHODS The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic) was measured using continuous(More)
Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical(More)
OBJECTIVE Mice are typically housed at environmental temperatures below thermoneutrality, whereas humans live near thermoneutrality. This difference affects energy physiology and, potentially, anti-obesity drug efficacy. Here β3-adrenergic agonist treatment at thermoneutrality (30°C) versus room temperature (22°C) is compared. METHODS Male C57BL/6J mice(More)
Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor(More)
Bombesin-like receptor 3 (BRS-3) is an X-linked orphan Gq-coupled receptor that regulates food intake, metabolic rate, body temperature, heart rate, blood pressure, and insulin secretion. Most BRS-3 actions occur via the brain, through mechanisms including regulating sympathetic outflow. Ablation of Brs3 causes obesity, while synthetic agonists produce(More)
Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor involved in the regulation of energy homeostasis. Brs3 null (Brs3-/y) mice become obese. To date, no high affinity endogenous ligand has been identified. In an effort to detect a circulating endogenous BRS-3 ligand, we generated parabiotic pairs of mice between Brs3-/y and wild type(More)
  • 1