Learn More
The hormone glucose-dependent insulinotropic polypeptide (GIP) potently stimulates insulin secretion and promotes beta-cell proliferation and cell survival. In the present study we identified Forkhead (Foxo1)-mediated suppression of the bax gene as a critical component of the effects of GIP on cell survival. Treatment of INS-1(832/13) beta-cells with GIP(More)
OBJECTIVE The endopeptidase dipeptidyl peptidase-IV (DPP-IV) has been shown to NH2-terminally truncate incretin hormones, glucose-dependent insulinotropic polypeptide, and glucagon-like peptide-1, thus ablating their ability to potentiate glucose-stimulated insulin secretion. Increasing the circulating levels of incretins through administration of DPP-IV(More)
The therapeutic potential of glucose-dependent insulinotropic polypeptide (GIP) for improving glycemic control has largely gone unstudied. A series of synthetic GIP peptides modified at the NH(2)-terminus were screened in vitro for resistance to dipeptidyl peptidase IV (DP IV) degradation and potency to stimulate cyclic AMP and affinity for the transfected(More)
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that potentiates glucose-stimulated insulin secretion during a meal. Since GIP has also been shown to exert β-cell prosurvival and adipocyte lipogenic effects in rodents, both GIP receptor agonists and antagonists have been considered as potential therapeutics in type 2(More)
The sex-determining region Y (SRY)-related high mobility group (HMG) box (SOX) family of transcription factors is essential for normal organismal development. Despite the longstanding knowledge that many SOX family members are expressed during pancreas development, a role for many of these factors in the establishment of insulin-producing beta cell fate(More)
The cyclic AMP (cAMP)/protein kinase A (PKA) cascade plays a central role in beta-cell proliferation and apoptosis. Here, we show that the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates expression of the antiapoptotic Bcl-2 gene in pancreatic beta cells through a pathway involving AMP-activated protein kinase (AMPK),(More)
AIMS The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured beta-cells. However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the effects of a truncated GIP analog, D-Ala(2)-GIP(1-30) (D-GIP(1-30)), on glucose homeostasis and beta-cell(More)
Glucose-dependent insulinotropic polypeptide (GIP) has been mainly studied because of its glucose-dependent insulinotropic action and its ability to regulate beta-cell proliferation and survival. Considerably less is known about the effects of GIP on fat metabolism, and the present study was directed at identifying the mechanisms underlying its stimulatory(More)
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the(More)
Islet transplantation is an attractive approach for treating type-1 diabetes, but there is a massive loss of transplanted islets. It is currently only possible to estimate islet mass indirectly, through measurement of circulating C-peptide and insulin levels. This type of estimation, however, is not sufficiently sensitive or reproducible for follow-up of(More)