Learn More
Volatile profiles yielded from gas chromatography-mass spectrometry (GC-MS) analysis provide abundant information not only for metabolism-related research, but also for chemotaxonomy. To study the chemotaxonomy of Mangshanyegan, its volatile profiles of fruit and leaf and those of 29 other genotypes of Citrus, Poncirus, and Fortunella were subjected to(More)
Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation(More)
BACKGROUND Our previous studies revealed that a new disease form of streptococcal toxic shock syndrome (STSS) is associated with specific Streptococcus suis serotype 2 (SS2) strains. To achieve a better understanding of the pathogenicity and evolution of SS2 at the whole-genome level, comparative genomic analysis of 18 SS2 strains, selected on the basis of(More)
To understand the biological response of normal cells to fractionated carbon beam irradiation, the effects of potentially lethal damage repair (PLDR) and sublethal damage repair (SLDR) were both taken into account in a linear-quadratic (LQ) model. The model was verified by the results of a fractionated cell survival experiment with normal human fibroblast(More)
To explore the application of DNA chip technology for the detection and typing of Human Papillomavirus (HPV), the HPV6, 11, 16 and 18 gene fragments were isolated and printed onto aminosilane-coated glass slides by a PixSys 5500 microarrayer as probes to prepare the HPV gene chips. HPV samples, after being labeled with fluorescent dye by restriction display(More)
Seafaring is a difficult occupation, and sailors face higher health risks than individuals on land. Commensal microbiota participates in the host immune system and metabolism, reflecting the host's health condition. However, the interaction mechanisms between the microbiota and the host's health condition remain unclear. This study reports the influence of(More)
High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary(More)
High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined(More)
Heavy ions are one of the most effective treatment for cancer patient and the common types of radiation in space, such as carbon ions [1, 2]. However, the mechanism underlying the response between carbon-irradiated cancer cells and neighboring bystander normal cells remains unclear. Using the layered tissue culture strategy [3], human glioblastoma (T98G)(More)
Potentially lethal damage (PLD) and its repair (PLDR) were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining after X-ray or heavy-ion exposures. Cells were either held in the non-cycling G0 phase of the cell cycle for 12 h, or forced to proliferate immediately after irradiation. Fusion premature chromosome(More)