Cuauhtémoc Licona-Cassani

Learn More
Genome-scale metabolic reconstructions are routinely used for the analysis and design of metabolic engineering strategies for production of primary metabolites. The use of such reconstructions for metabolic engineering of antibiotic production is not common due to the lack of simple design algorithms in the absence of a cellular growth objective function.(More)
Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest ("metabolic switch") preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete(More)
Actinobacteria form a major bacterial phylum that includes numerous human pathogens. Actinobacteria are primary contributors to carbon cycling and also represent a primary source of industrial high value products such as antibiotics and biopesticides. Consistent with other members of the actinobacterial phylum, Saccharopolyspora erythraea undergo a(More)
Despite the abundance of xylose in nature, the production of chemicals from C5 sugars remains challenging in metabolic engineering. By deleting xylFGH genes and using adaptive evolution, an efficient E. coli strain capable of producing D-lactate from xylose was engineered. Quantitative proteomics and genome sequencing were used to understand the new(More)
Accurate bacterial genome annotations provide a framework to understanding cellular functions, behavior and pathogenicity and are essential for metabolic engineering. Annotations based only on in silico predictions are inaccurate, particularly for large, high G + C content genomes due to the lack of similarities in gene length and gene organization to model(More)
Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known(More)
Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source,(More)
The glycolytic intermediate phosphoenolpyruvate (PEP) is a precursor of several cellular components, including various aromatic compounds. Modifications to the PEP node such as PEP:sugar phosphotransferase system (PTS) or pyruvate kinase inactivation have been shown to have a positive effect on aromatics production capacity in Escherichia coli and Bacillus(More)
Sphingobacterium sp. CZ-UAM was isolated from a methanotrophic consortium in mineral medium using methane as the only carbon source. A draft genome of 5.84 Mb with a 40.77% G+C content is reported here. This genome sequence will allow the investigation of potential methanotrophy in this isolated strain.
Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to(More)