Learn More
We investigate connections between single-cell mechanical properties and subcellular structural reorganization from biochemical factors in the context of two distinctly different human diseases: gastrointestinal tumor and malaria. Although the cell lineages and the biochemical links to pathogenesis are vastly different in these two cases, we compare and(More)
Studies of the deformation characteristics of single biological cells can offer insights into the connections among mechanical state, biochemical response and the onset and progression of diseases. Deformation imposed by optical tweezers provides a useful means for the study of single cell mechanics under a variety of well-controlled stress-states. In this(More)
An initial spectrin network (see Fig. 1(a)) is generated to cover a spherical surface using a public-domain software (Weber et al., 2002). It employs a recursive division and projection algorithm. The first approximation of a sphere is an icosahedron with 12 vertices and 20 (initially equilateral) triangular faces. Every level of refinement subdivides each(More)
The effect of nanofiber surface coatings on the cell's proliferation behavior was studied. Individually collagen-coated poly(epsilon-caprolactone) (PCL) nanofibers (i.e., Collagen-r-PCL in the form of a core-shell structure) were prepared by a coaxial electrospinning technique. A roughly collagen-coated PCL nanofibrous matrix was also prepared by soaking(More)
Most muscular dystrophies manifest as peripheral muscular weakness commencing at various age, however, oculopharyngeal muscular dystrophy (OPMD) is a rare hereditary disorder presenting in middle age with progressive dysphagia and bilateral blepharoptosis rather than peripheral muscular weakness. In the medical literature, OPMD has been well described in(More)
The current design requirement for a tissue engineering skin substitute is that of a biodegradable scaffold through which fibroblasts can migrate and populate. This artificial "dermal layer" needs to adhere to and integrate with the wound, which is not always successful for the current artificial dermal analogues available. The high cost of these artificial(More)
During intraerythrocytic development, Plasmodium falciparum exports proteins that interact with the host cell plasma membrane and subplasma membrane-associated spectrin network. Parasite-exported proteins modify mechanical properties of host RBCs, resulting in altered cell circulation. In this work, optical tweezers experiments of cell mechanical properties(More)
Microfluidic devices possess many advantages like high throughput, short analysis time, small volume and high sensitivity that fulfill all the important criteria of an immunoassay used for clinical diagnoses, environmental analyses and biochemical studies. These devices can be made from a few different materials, with polymers presently emerging as the most(More)
We present a three-dimensional computational study of whole-cell equilibrium shape and deformation of human red blood cell (RBC) using spectrin-level energetics. Random network models consisting of degree-2, 3, ..., 9 junction complexes and spectrin links are used to populate spherical and biconcave surfaces and intermediate shapes, and coarse-grained(More)
One of the major applications of tissue-engineered skin substitutes for wound healing is to promote the healing of cutaneous wounds. In this respect, many important clinical milestones have been reached in the past decades. However, currently available skin substitutes for wound healing often suffer from a range of problems including wound contraction, scar(More)