Csaba Niedetzky

Learn More
The atomic force microscope is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. To exploit the advantages of both methods, here we developed a spatially and temporally(More)
The lateral hypothalamic area (LHA) and globus pallidus (GP) are basically involved in the regulation of feeding and metabolic processes. In the LHA, glucose-sensitive (GS) neurons were described: their activity was found to be specifically suppressed by electrophoretic application of glucose, and these neurons appeared to be also influenced by various(More)
The globus pallidus (GP) is intimately involved in regulation of various aspects of hunger- and thirst-motivated behaviors. Our parallel neurochemical studies demonstrated the existence of GP neurons whose discharge rates are suppressed by glucose applied microelectrophoretically. In the present series of experiments, we aimed to provide complex,(More)
We constructed a "temperature-jump/stopped-flow" apparatus that allows us to study fast enzyme reactions at extremely high temperatures. This apparatus is a redesigned stopped-flow which is capable of mixing the reactants on a submillisecond timescale concomitant with a temperature-jump even as large as 60 degrees C. We show that enzyme reactions that are(More)
A computer controlled complex electrophysiological set-up employing the multibarrel micro-electrophoretic technique is reported in this paper. The laboratory equipped for this technique is used for recording single neuron activity from various sites of the central nervous system of rhesus monkeys during: 1) performing conditioned behavioral tasks, 2)(More)
Despite the large amount of neuropharmacological data concerning catecholamine (CA) mechanisms of the mammalian brain, little is known yet about the effects of MAO-inhibitors on single neurons. The present series of experiments aim to elucidate these specific neurochemical attributes of forebrain cells. Single neuron activity was recorded by means of(More)
  • 1