Learn More
Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall(More)
The lattice reduction (LR) technique has become very important in many engineering fields. However, its high complexity makes difficult its use in real-time applications, especially in applications that deal with large matrices. As a solution, the modified block LLL (MB-LLL) algorithm was introduced, where several levels of parallelism were exploited: (a)(More)
In low-rate UWB impulse radio the carrier pulses have very short duration that limits the energy per bit in an extremely low value. The low bit energy results in an unacceptable short radio coverage. In the paper new UWB carrier pulse generation techniques are proposed to increase the pulse duration considerably. In order to get an ultra wideband carrier a(More)
We studied the drift of electron spins under an applied dc electric field in single layer graphene spin valves in a field-effect transport geometry at room temperature. In the metallic conduction regime (n approximately 3.5 x 10(16) m(-2)), for dc fields of about +/- 70 kV/m applied between the spin injector and spin detector, the spin valve signals are(More)
The energy transmitted per bit limits the radio coverage. In impulse radio the UWB pulses used carry a very little energy since they are extremely short. As a consequence the radio coverage is unacceptable short. A solution to increase the energy per bit is the enlargement of the duration of UWB carrier pulse, however, this solution cannot be used because(More)
  • 1