Cristopher Moore

Learn More
The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many(More)
Networks have in recent years emerged as an invaluable tool for describing and quantifying complex systems in many branches of science. Recent studies suggest that networks often exhibit hierarchical organization, in which vertices divide into groups that further subdivide into groups of groups, and so forth over multiple scales. In many cases the groups(More)
To study quantum computation, it might be helpful to generalize structures from language and automata theory to the quantum case. To that end, we propose quantum versions of finite-state and push-down automata, and regular and context-free grammars. We find analogs of several classical theorems, including pumping lemmas, closure properties, rational and(More)
In this paper we extend our previous work on the stochastic block model, a commonly used generative model for social and biological networks, and the problem of inferring functional groups or communities from the topology of the network. We use the cavity method of statistical physics to obtain an asymptotically exact analysis of the phase diagram. We(More)
We de ne a class of recursive functions on the reals analogous to the classical recursive functions on the natural numbers corresponding to a conceptual analog computer that operates in continuous time This class turns out to be surprisingly large and includes many functions which are uncomputable in the traditional sense We stratify this class of functions(More)
Understanding the graph structure of the Internet is a crucial step for building accurate network models and designing efficient algorithms for Internet applications. Yet, obtaining this graph structure can be a surprisingly difficult task, as edges cannot be explicitly queried. For instance, empirical studies of the network of Internet Protocol (IP)(More)
Recently, it has been shown that one-dimensional quantum walks can mix more quickly than classical random walks, suggesting that quantum Monte Carlo algorithms can outperform their classical counterparts. We study two quantum walks on the n-dimensional hypercube, one in discrete time and one in continuous time. In both cases we show that the quantum walk(More)
We consider a model of analog computation which can recognize various languages in real time. We encode an input word as a point in R d by composing iterated maps, and then apply inequalities to the resulting point to test for membership in the language. Each class of maps and inequalities, such as quadratic functions with rational coeecients, is capable of(More)
Many NP-complete constraint satisfaction problems appear to undergo a “phase transition” from solubility to insolubility when the constraint density passes through a critical threshold. In all such cases it is easy to derive upper bounds on the location of the threshold by showing that above a certain density the first moment (expectation) of the number of(More)
Most current methods for identifying coherent structures in spatially extended systems rely on prior information about the form which those structures take. Here we present two approaches to automatically filter the changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity filtering, is a modification of(More)