Learn More
BACKGROUND Wheat (Triticum ssp.) is an important food source for humans in many regions around the world. However, the ability to understand and modify gene function for crop improvement is hindered by the lack of available genomic resources. TILLING is a powerful reverse genetics approach that combines chemical mutagenesis with a high-throughput screen for(More)
Next generation sequencing (NGS) technologies are providing new ways to accelerate fine-mapping and gene isolation in many species. To date, the majority of these efforts have focused on diploid organisms with readily available whole genome sequence information. In this study, as a proof of concept, we tested the use of NGS for SNP discovery in tetraploid(More)
  • Lizette M Schneider, Nikolai M Adamski, Caspar Elo Christensen, David B Stuart, Sonia Vautrin, Mats Hansson +2 others
  • 2016
The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes Abstract Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes.(More)
The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble(More)
BACKGROUND Increasing the nutrient concentration of wheat grains is important to ameliorate nutritional deficiencies in many parts of the world. Proteins and nutrients in the wheat grain are largely derived from the remobilization of degraded leaf molecules during monocarpic senescence. The down-regulation of the NAC transcription factor Grain Protein(More)
High grain protein content (GPC) is a frequent target of wheat breeding programmes because of its positive effect on bread and pasta quality. A wild wheat allele at the Gpc-B1 locus with a significant impact on this trait was identified previously. The precise mapping of several senescence-related traits in a set of tetraploid recombinant substitution lines(More)
The wheat GPC-B1 gene located on chromosome 6B is an early regulator of senescence and affects remobilization of protein and minerals to the grain. GPC-B1 is a NAC transcription factor and has a paralogous copy on chromosome 2B in wheat, GPC-B2. The closest rice homolog to both wheat GPC genes is Os07g37920 which is located on rice chromosome 7 and is(More)
Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is(More)
  • Tom Lawrenson, Oluwaseyi Shorinola, Nicola Stacey, Chengdao Li, Lars Østergaard, Nicola Patron +2 others
  • 2015
The RNA-guided Cas9 system represents a flexible approach for genome editing in plants. This method can create specific mutations that knock-out or alter target gene function. It provides a valuable tool for plant research and offers opportunities for crop improvement. We investigate the use and target specificity requirements of RNA-guided Cas9 genome(More)