Learn More
Normalized entropy as a measure of randomness is explored. It is employed to characterize those properties of neuronal firing that cannot be described by the first two statistical moments. We analyze randomness of firing of the Ornstein-Uhlenbeck (OU) neuronal model with respect either to the variability of interspike intervals (coefficient of variation) or(More)
The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously recorded spike trains. We develop a non-parametric method(More)
Statistical properties of spike trains as well as other neurophysiological data suggest a number of mathematical models of neurons. These models range from entirely descriptive ones to those deduced from the properties of the real neurons. One of them, the diffusion leaky integrate-and-fire neuronal model, which is based on the Ornstein–Uhlenbeck (OU)(More)
An optimum signal in the Ornstein-Uhlenbeck neuronal model is determined on the basis of interspike interval data. Two criteria are proposed for this purpose. The first, the classical one, is based on searching for maxima of the slope of the frequency transfer function. The second one uses maximum of the Fisher information, which is, under certain(More)
The stochastic leaky integrate-and-fire (LIF) continuous model is studied under the condition that the amplitude of noise is a function of the input signal. The coefficient of variation (CV) of interspike intervals (ISIs) is investigated for different types of dependencies between the noise and the signal. Finally, we present the CV and the ISI density(More)
  • 1