Learn More
As a continuation of our previous work, which resulted in the identification of a new hit compound as an HIV-1 integrase inhibitor, three novel series of salicylic acid derivatives were synthesized using three versatile and practical synthetic strategies and were assayed for their capacity to inhibit the catalytic activity of HIV-1 integrase. Biological(More)
Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several(More)
A high-throughput molecular docking approach was successfully applied for the selection of potential inhibitors of the Influenza RNA-polymerase which act by targeting the PA-PB1 protein-protein interaction. Commercially available compounds were purchased and biologically evaluated in vitro using an ELISA-based assay. As a result, some compounds possessing a(More)
A novel compound inhibiting HIV-1 integrase has been identified by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with some of the compounds possessing micromolar activity both in enzymatic and cellular assays.
The influenza RNA polymerase complex, which consists of the three subunits PA, PB1, and PB2, is a promising target for the development of new antiviral drugs. A large library of benzofurazan compounds was synthesized and assayed against influenza virus A/WSN/33 (H1N1). Most of the new derivatives were found to act by inhibiting the viral RNA polymerase(More)
Influenza is an infectious disease that represents an important public health burden, with high impact on the global morbidity, mortality, and economy. The poor protection and the need of annual updating of the anti-influenza vaccine, added to the rapid emergence of viral strains resistant to current therapy make the need for antiviral drugs with novel(More)
In recent years, HIV-1 integrase (IN) has become an established target in the field of antiretroviral drug discovery. However, its sole clinically approved inhibitor, the integrase strand transfer inhibitor (INSTI) raltegravir, has a surprisingly low genetic barrier for resistance. Furthermore, the only two other integrase inhibitors currently in advanced(More)
HIV-1 integrase (IN) is an essential enzyme for viral replication and represents an intriguing target for the development of new drugs. Although a large number of compounds have been reported to inhibit IN in biochemical assays, no drug active against this enzyme has been approved by the FDA so far. In this study, we report, for the first time, the use of(More)
Human immunodeficiency virus-1 integrase (HIV-1 IN) inserts the viral DNA into host cell chromatin in a multistep process. This enzyme exists in equilibrium between monomeric, dimeric, tetrameric and high order oligomeric states. However, monomers of IN are not capable of supporting its catalytic functions and the active form has been shown to be at least a(More)
The Met receptor tyrosine kinase is a promising target in anticancer therapies for its role during tumor evolution and resistance to treatment. It is characterized by an unusual structural plasticity as its active site accepts different inhibitor binding modes. Such feature can be exploited to identify distinct agents targeting tumor dependence and/or(More)