Cristina Tejel

  • Citations Per Year
Learn More
The diiridium complex [{Ir(ABPN2)(CO)}2(μ-CO)] (1; [ABPN2](-) = [(allyl)B(Pz)2(CH2PPh2)](-)) reacts with diphenylphosphane affording [Ir(ABPN2)(CO)(H) (PPh2)] (2), the product of the oxidative addition of the P-H bond to the metal. DFT studies revealed a large contribution of the terminal phosphanido lone pair to the HOMO of 2, indicating nucleophilic(More)
The structure of the Ir(I) complex [Ir2(mu-OPy)2(CO)4] (Opy = 2-pyridonate) has been fully characterized in its head-to-head (A) configuration as a "dimer of dimers" AA in which two binuclear complexes are connected by means of a weak, but unsupported, iridium-iridium interaction (Ir(2)...Ir(2A) 2.9808(6) A). The head-to-tail isomer, referred to as B, was(More)
The compound syn-[{Rh(mu-NH{p-tolyl})(CNtBu)(2)}(2)] (1) oxidatively adds C--Cl bonds of alkyl chlorides (RCl) and dichloromethane to each metal centre to give the cationic complexes syn-[{Rh(mu-NH{p-tolyl})(eta(1)-R)(CNtBu)(2)}(2)(mu-Cl)]Cl and anti-[{Rh(mu-NH{p-tolyl})Cl(CNtBu)(2)}(2)(mu-CH(2))]. Reaction of 1 with the chiral alkyl chloride(More)
Although the pentacoordinated complex [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(cod)] (1; pz=pyrazolyl, cod=1,5-cyclooctadiene), isolated from the reaction of [{Ir(mu-Cl)(cod)}(2)] with [Li(tmen)][B(allyl)(CH(2)PPh(2))- (pz)(2)] (tmen=N,N,N',N'-tetramethylethane-1,2-diamine), shows behavior similar to that of the related hydridotris(pyrazolyl)borate complex, the(More)
Carboxylic acids and their esters or lactones are among the most common functionalities, and a large number of fine chemicals are accessible from this functionality. Typical organic synthetic procedures towards carboxylic acids include oxidation of alcohols and aldehydes and hydrolysis of nitriles, while carboxylation of organic substrates containing C X(More)
Complexes with terminal phosphanido (M-PR2) functionalities are believed to be crucial intermediates in new catalytic processes involving the formation of P-P and P-C bonds. We showcase here the isolation and characterization of mononuclear phosphanide rhodium complexes ([RhTp(H)(PR2)L]) that result from the oxidative addition of secondary phosphanes, a(More)
Compounds of the late transition metals with M=X multiple bonds (X=CR2, NR, O) represent a synthetic challenge, partly overcome by preparative chemists, but with noticeable gaps in the second- and third-row elements. For example, there are no isolated examples of terminal imido rhodium complexes known to date. Described herein is the isolation,(More)
The combination of transition-metal Lewis acidity and radical-type reactivity of “redox non-innocent” ligands bound to the same metal plays a pivotal role in the biochemistry of several important metalloenzymes, thus enabling them to perform transformations which would otherwise be difficult to perform. The catalytic mechanism of alcohol oxidation by(More)