Cristina Satriano

Learn More
The influence of the surface chemical structure and related physicochemical properties on the adhesion of P. aeruginosa has been studied for moderately hydrophobic polymers and for hydrophilic surfaces obtained by O2-plasma treatments and 50 keV Ar+ beam irradiation of poly(hydroxymethylsiloxane) and poly(ethyleneterephthalate). The surface chemical(More)
Poly(ADP-ribose) polymerases (PARPs) are recognized as key regulators of cell survival or death. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. The enzyme may be overactivated in response to inflammatory cues, thus depleting cellular energy pools and eventually causing cell death. Accordingly, PARP-1(More)
The adsorption process of albumin, lysozyme and lactoferrin was investigated onto polymer surfaces, both hydrophobic and hydrophilic treated by oxygen-plasma. In particular thin films of polyhydroxymethylsiloxane (about 90 degrees of static water contact angle) were converted by oxygen plasma treatments at reduced pressure into hydrophilic SiO(x) phases(More)
In this study, chitosan membranes prepared by the solvent casting method were modified with the Arg-Gly-Asp-Ser (RGDS) sequence of fibronectin using the photochemical immobilization technique. The results obtained from attenuated total reflection-Fourier transform infrared spectra and X-ray photoelectron spectroscopy studies confirmed the successful(More)
The adsorption behavior of H-Arg-Gly-Asp-OH (RGD) oligopeptide on ion-irradiated polymer surfaces has been studied. The RGD-incubated surfaces of poly(ethylene terephtalate) (PET) and poly(hydroxymethylsiloxane) (PHMS) thin films, before and after irradiation with 50 keV Ar+ to 1x10(15) ions/cm2, were investigated by X-Ray Photoelectron Spectroscopy and(More)
The ability to control cell proliferation/differentiation, using material surface, is a main goal in tissue engineering. The objective of this study was to evaluate the attachment, proliferation and differentiation to the osteoblastic phenotype of human marrow stromal cells (MSC) when seeded on poly-epsilon-caprolactone (PCL) thin films before and after(More)
Physicochemical properties of the graphene-water interface have been investigated to scrutinize the perturbations with respect to the graphene-air interface, in terms of changes in optical and vibrational spectra, as well as in the 3D network of water. Experimental investigations were carried out using Raman spectroscopy and laser scanning confocal(More)
[1] We investigate the effect of extended faulting processes and heterogeneous wave propagation on the early warning system capability to predict the peak ground velocity (PGV) from moderate to large earthquakes occurring in the southern Apennines (Italy). Simulated time histories at the early warning network have been used to retrieve early estimates of(More)
Using techniques of tissue engineering, synthetic substitutes can be applied for the repair and regeneration of damaged bone. It has been found that material surface properties are crucial for cell adhesion and spreading, i.e. cell activities that are related directly to the ability of osteoblasts to proliferate. This fact has promoted the strategy of(More)
The study deals with the adhesion and proliferation of bovine retina pericytes onto surfaces of poly(hydroxymethylsiloxane) (PHMS) modified either by cold plasma or by low-energy ion beams. The surface treatment was able to convert the original polymer matrix into SiO2-like phases for O2-plasma or ion-mixed SiCxOy(Hz) phases for ion irradiation,(More)