Learn More
GDNF is a potent neurotrophic factor that protects catecholaminergic neurons from toxic damage and induces fiber outgrowth. However, the actual role of endogenous GDNF in the normal adult brain is unknown, even though GDNF-based therapies are considered promising for neurodegenerative disorders. We have generated a conditional GDNF-null mouse to suppress(More)
Oxidative damage to dopaminergic nigrostriatal (DNS) neurons plays a central role in the pathogenesis of Parkinson's disease (PD). Glucose-6-phosphate dehydrogenase (G6PD) is a key cytoprotective enzyme that provides NADPH, the major source of the reducing equivalents of a cell. Mutations of this enzyme are the most common enzymopathies worldwide. We have(More)
Accumulating evidences suggest that neuroinflammation is involved in the progressive death of dopaminergic neurons in Parkinson's disease. Several studies have shown that intranigral injection of lipopolysaccharide induces inflammation in the substantia nigra leading to death of tyrosine hydroxylase-positive cells. To better understand how the inflammatory(More)
The SDHD gene encodes one of the two membrane-anchoring proteins of the succinate dehydrogenase (complex II) of the mitochondrial electron transport chain. This gene has recently been proposed to be involved in oxygen sensing because mutations that cause loss of its function produce hereditary familiar paraganglioma, a tumor of the carotid body (CB), the(More)
Using segregation and population analysis of serological data prepared in our laboratory, we have tentatively defined five OLA antigenic specificities: CO1.1, CO1.2, CO2.1 and CO2.2, whose genetic control would fit a model of two class I OLA loci (CO1.1 and CO1.2 first locus, CO2.1 and CO2.2 second locus, and CO3.1, that could represent a subtype of CO2.2.(More)
Increased neuroinflammatory reaction is frequently observed during normal brain aging. However, a direct link between neuroinflammation and neurodegeneration during aging has not yet been clearly shown. Here, we have characterized the age-related hippocampal inflammatory processes and the potential relation with hippocampal neurodegeneration. The mRNA(More)
Prostaglandin E1 has hepatoprotective properties in several clinical and experimental models of liver dysfunction. Hepatotoxicity induced by D-galactosamine (D-GalN) is a suitable animal model of human acute hepatic failure. The aim of the study was to investigate if prostaglandin E1 (PGE1) protection against hepatic D-GalN-induced apoptosis was related to(More)
Tachykinins may be involved in reproduction. A reverse transcription-polymerase chain reaction assay was used to analyze the expression of tachykinins and tachykinin receptors in different types of reproductive cells from mice. The preprotachykinin (PPT) genes, PPT-A, PPT-B and PPT-C, that encode substance P/neurokinin A, neurokinin B, and hemokinin-1,(More)
Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats,(More)
Dysfunctions of the ubiquitin proteasome system (UPS) have been proposed to be involved in the aetiology and/or progression of several age-related neurodegenerative disorders. However, the mechanisms linking proteasome dysfunction to cell degeneration are poorly understood. We examined in young and aged rat hippocampus the activation of the unfolded protein(More)