Learn More
—In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e.(More)
—One of the motivations behind the development of humanoid robots is the will to comply with, and fruitfully integrate in the human environment, a world forged by humans for humans, where the importance of the hand shape dominates prominently. This paper presents the novel hand under-actuation framework which goes under the name of synergies. In particular(More)
— Despite some prematurely optimistic claims, the ability of robots to grasp general objects in unstructured environments still remains far behind that of humans. This is not solely caused by differences in the mechanics of hands: indeed, we show that human use of a simple robot hand (the Pisa/IIT SoftHand) can afford capabilities that are comparable to(More)
State of the art of hand prosthetics is divided between simple and reliable gripper-like systems and sophisticate hi-tech poly-articular hands which tend to be complex both in their design and for the patient to operate. In this paper, we introduce the idea of decoding different movement intentions of the patient using the dynamic frequency content of the(More)
The ability to process rapidly-occurring auditory stimuli plays an important role in the mechanisms of language acquisition. For this reason, the research community has begun to investigate infant auditory processing, particularly using the Event Related Potentials (ERP) technique. In this paper we approach this issue by means of time domain and(More)
  • 1