Cristina Murga

Learn More
G protein-coupled receptor kinases (GRKs) and arrestins are key participants in the canonical pathways leading to phosphorylation-dependent GPCR desensitization, endocytosis, intracellular trafficking and resensitization as well as in the modulation of important intracellular signaling cascades by GPCR. Novel studies have revealed a(More)
The G protein-coupled receptor kinases (GRKs) participate with arrestins in the regulation and signal propagation of multiple G protein-coupled receptors (GPCR) of key physiological and pharmacological relevance in the cardiovascular system. The complex mechanisms of regulation of GRK expression, degradation and function are being unveiled gradually. The(More)
GRK2 is a ubiquitous member of the G protein-coupled receptor kinase (GRK) family that appears to play a central, integrative role in signal transduction cascades. GRKs participate together with arrestins in the regulation of G protein-coupled receptors (GPCR), a family of hundreds of membrane proteins of key physiological and pharmacological importance, by(More)
From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have(More)
p38 Mitogen-activated protein kinases (MAPK) are a family of Ser/Thr kinases that regulate important cellular processes such as stress responses, differentiation, and cell-cycle control . Activation of MAPK is achieved through a linear signaling cascade in which upstream kinases (MAPKKs) dually phosphorylate MAPKs at a conserved 3-amino-acid motif(More)
The effects of opiate drugs (heroin, morphine, and methadone) on the levels of G protein-coupled receptor kinase 2 (GRK2) were studied in rat and human brain frontal cortices. The density of brain GRK2 was measured by immunoblot assays in acute and chronic opiate-treated rats as well as in opiate-dependent rats after spontaneous or naloxone-precipitated(More)
G protein-coupled receptor kinase 2 (GRK2) has recently emerged as a negative modulator of insulin signaling. GRK2 downregulation improves insulin sensitivity and prevents systemic insulin resistance. Cardiac GRK2 levels are increased in human heart failure, while genetically inhibiting GRK2 leads to cardioprotection in mice. However, the molecular basis(More)
G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous serine/threonine protein kinase able to phosphorylate and desensitize the active form of several G protein-coupled receptors. Given the lack of selective inhibitors for GRK2, we investigated the effects elicited by GRK2 inhibition in vascular responses using global adult hemizygous mice (GRK2(+/-)).(More)
beta-Adrenergic receptor kinase (beta ARK) is a regulatory enzyme involved in the modulation of beta-adrenergic and other G protein-coupled receptors. It has been described that beta ARK is a cytosolic protein that transiently translocates to the plasma membrane in order to specifically phosphorylate agonist-occupied receptors. In this report, we used beta(More)