Learn More
Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in(More)
Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent(More)
Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size(More)
BACKGROUND There have recently been increasing case reports in the literature of deep brain stimulation (DBS) electrodes used for lesioning with satisfactory clinical success in the treatment of Parkinson disease and tremor. METHODS After preliminary experiments of radiofrequency (RF) lesioning with a quadripolar DBS lead, a paediatric case of generalized(More)
The effects of electron beam or λ-irradiation on technological performances (capsule hardness, expressed as deforming work and dissolution time) of empty 2-shell capsules made of gelatin or hydroxypropylmethylcellulose (HPMC) were studied. Capsule structural changes induced by radiation treatment were investigated by capillary viscometry and atomic force(More)
Despite significant progresses were achieved in tissue engineering over the last 20 years, a number of unsolved problems still remain. One of the most relevant issues is the lack of a proper vascularization that is limiting the size of the engineered tissues to smaller than clinically relevant dimensions. Sacrificial molding holds great promise to(More)
BACKGROUND Microneedle-mediated drug delivery is a promising method for transdermal delivery of insulin, incretin mimetics, and other protein-based pharmacologic agents for treatment of diabetes mellitus. One factor that has limited clinical application of conventional microneedle technology is the poor fracture behavior of microneedles that are created(More)
BACKGROUND Substrate nanoscale topography influences cell proliferation and differentiation through mechanisms that are at present poorly understood. In particular the molecular mechanism through which cells 'sense' and adapt to the substrate and activate specific intracellular signals, influencing cells survival and behavior, remains to be clarified. (More)
Cell patterning is an important tool for organizing cells in surfaces and to reproduce in a simple way the tissue hierarchy and complexity of pluri-cellular life. The control of cell growth, proliferation and differentiation on solid surfaces is consequently important for prosthetics, biosensors, cell-based arrays, stem cell therapy and cell-based drug(More)
Nucleus pulposus (NP) tissue damage can induce detrimental mechanical stresses and strains on the intervertebral disc, leading to disc degeneration. This study demonstrates the potential of a novel, photo-curable, injectable, synthetic polymer hydrogel (pHEMA-co-APMA grafted with polyamidoamine (PAA)) to encapsulate and differentiate human mesenchymal stem(More)