Cristina Lenardi

Learn More
Nanostructured carbon films produced by supersonic cluster beam deposition have been studied by in situ Raman spectroscopy. Raman spectra show the formation of a sp2 solid with a very large fraction of sp-coordinated carbyne species with a long-term stability under ultrahigh vacuum. Distinct Raman contributions from polyyne and cumulene species have been(More)
We report the production and characterization of a form of amorphous carbon with s p-s p(2) hybridization (atomic fraction of sp hybridized species > or =20%) where the predominant sp bonding appears to be (=C=C=)(n) cumulene. Vibrational and electronic properties have been studied by in situ Raman spectroscopy and electrical conductivity measurements.(More)
The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signaling events, often guided by the extracellular matrix (ECM). Here we report that(More)
A comparative study of AFM and SEM imaging of the same area of a human scalp hair has been carried out to determine the similarity and the differences between the two techniques. Sample preparation for SEM analysis requires a metallization step and vacuum exposure, both of which could potentially induce modifications to the surface details. By contrast, AFM(More)
Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in(More)
BACKGROUND There have recently been increasing case reports in the literature of deep brain stimulation (DBS) electrodes used for lesioning with satisfactory clinical success in the treatment of Parkinson disease and tremor. METHODS After preliminary experiments of radiofrequency (RF) lesioning with a quadripolar DBS lead, a paediatric case of generalized(More)
The effects of electron beam or λ-irradiation on technological performances (capsule hardness, expressed as deforming work and dissolution time) of empty 2-shell capsules made of gelatin or hydroxypropylmethylcellulose (HPMC) were studied. Capsule structural changes induced by radiation treatment were investigated by capillary viscometry and atomic force(More)
Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent(More)
Despite significant progresses were achieved in tissue engineering over the last 20 years, a number of unsolved problems still remain. One of the most relevant issues is the lack of a proper vascularization that is limiting the size of the engineered tissues to smaller than clinically relevant dimensions. Sacrificial molding holds great promise to(More)
Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size(More)