Cristina Giacinti

Learn More
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective degeneration of motor neurons, atrophy, and paralysis of skeletal muscle. Although a significant proportion of familial ALS results from a toxic gain of function associated with dominant SOD1 mutations, the etiology of the disease and its specific(More)
The Rb protein is a tumor suppressor, which plays a pivotal role in the negative control of the cell cycle and in tumor progression. It has been shown that Rb protein (pRb) is responsible for a major G1 checkpoint, blocking S-phase entry and cell growth. The retinoblastoma family includes three members, Rb/p105, p107 and Rb2/p130, collectively referred to(More)
We investigated the mechanism whereby expression of a transgene encoding a locally acting isoform of insulin-like growth factor 1 (mIGF-1) enhances repair of skeletal muscle damage. Increased recruitment of proliferating bone marrow cells to injured MLC/mIgf-1 transgenic muscles was accompanied by elevated bone marrow stem cell production in response to(More)
Muscle regeneration following injury is characterized by myonecrosis accompanied by local inflammation, activation of satellite cells, and repair of injured fibers. The resolution of the inflammatory response is necessary to proceed toward muscle repair, since persistence of inflammation often renders the damaged muscle incapable of sustaining efficient(More)
p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic(More)
In breast cancer tumor expression of estrogen receptors (ERs) is important as a marker of prognosis and mostly as a predictor of response to endocrine therapy. In fact, the loss of α-ER expression leads to unresponsiveness to anti-hormone treatment. In a significant fraction of breast cancers, this loss of expression is a result of epigenetic mechanisms,(More)
Adult skeletal muscle contains a specialized population of myogenic quiescent stem cells, termed satellite cells, which contribute to repair myofibers after injury. During muscle regeneration, satellite cells exit their normal quiescent state, proliferate, activating MyoD and Myf-5 expression, and finally differentiate and fuse to reconstitute the injured(More)
Cyclin-dependent kinases (cdks) are the catalytic subunits of a large family of serine/threonine protein kinases whose best-characterized members are key regulators of eukaryotic cell cycle progression. They are activated by binding to regulatory subunits generally termed as cyclins. Cdk10 is a cdc2-related kinase that contains the canonical regulatory Tyr(More)
One of the most exciting aspirations of current medical science is the regeneration of damaged body parts. The capacity of adult tissues to regenerate in response to injury stimuli represents an important homeostatic process that until recently was thought to be limited in mammals to tissues with high turnover such as blood and skin. However, it is now(More)
Human heart harbors a population of resident progenitor cells that can be isolated by stem cell antigen-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, less than 1%-5% survive and differentiate. Among the(More)