Cristina Gamell

Learn More
Rapid tumor cell proliferation frequently outpaces adequate vascularization, resulting in a limited cellular oxygen supply. Low cellular oxygen, ‘hypoxia’ is often associated with necrotic tumor foci, but also with the selection of aggressive survival mutations. Interplay between tumor cells and the associated stroma (including endothelial cells) is(More)
Restoration of tumor suppression is an attractive onco-therapeutic approach. It is particularly relevant when a tumor suppressor is excessively degraded by an overactive oncogenic E3 ligase. We previously discovered that the E6-associated protein (E6AP; as classified in the human papilloma virus context) is an E3 ligase that has an important role in the(More)
Recognition of the tumour suppressive capacity of the Promyelocytic Leukemia protein (PML) has emerged beyond its identification through APL, to a broad spectrum of tumors. This ability has chiefly been linked to its role as a core component of dynamic structures termed PML Nuclear Bodies (PML-NBs). In response to a variety of stresses, key factors and(More)
Recently, we showed that the ubiquitin ligase E6AP stabilizes β-catenin and activates its transcriptional activity. These activities were enhanced by the human papillomavirus (HPV) E6 protein. In the present study, we explored the function of E6AP, which increases β-catenin stabilization and transcriptional activation. Here, we report that E6AP interacts(More)
The tumor suppressor p16INK4a, one protein encoded by the INK4/ARF locus, is frequently absent in multiple cancers, including non-small cell lung cancer (NSCLC). Whereas increased methylation of the encoding gene (CDKN2A) accounts for its loss in a third of patients, no molecular explanation exists for the remainder. We unraveled an alternative mechanism(More)
The function of the tumor suppressor p53 is universally compromised in cancers. It is the most frequently mutated gene in human cancers (reviewed). In cases where p53 is not mutated, alternative regulatory pathways inactivate its tumor suppressive functions. This is primarily achieved through elevation in the expression of the key inhibitors of p53: Mdm2 or(More)
Cellular senescence is characterised by the irreversible arrest of proliferation, a pro-inflammatory secretory phenotype and evasion of programmed cell death mechanisms. We report that senescence alters cellular iron acquisition and storage and also impedes iron-mediated cell death pathways. Senescent cells, regardless of stimuli (irradiation, replicative(More)
A key step during onset of most cases of non-small cell lung cancer (NSCLC) is the loss of the tumor suppressor p16INK4a (best known as p16), commonly due to promoter hypermethylation. We recently reported a novel regulatory pathway involving E6-associated protein and cell division control protein 6, which provides a methylation-independent mechanism for(More)
Mutation of the key tumour suppressor p53 defines a transition in the progression towards aggressive and metastatic breast cancer (BC) with the poorest outcome. Specifically, the p53 mutation frequency exceeds 50% in triple-negative BC. Key regulators of mutant p53 that facilitate its oncogenic functions are potential therapeutic targets. We report here(More)
Prostate cancer (PC) is the most common cancer in men. Elevated levels of E3 ligase, E6-Associated Protein (E6AP) were previously linked to PC, consistent with increased protein expression in a subset of PC patients. In cancers, irregular E3 ligase activity drives proteasomal degradation of tumor suppressor proteins. Accordingly, E3 ligase inhibitors define(More)