Cristina Fernández Grande

Learn More
By stimulating distinct receptor subtypes, dopamine (DA) exerts presynaptic and postsynaptic actions on both large aspiny (LA) cholinergic and fast-spiking (FS) parvalbumin-positive interneurons of the striatum. Lack of receptor- and isoform-specific pharmacological agents, however, has hampered the progress toward a detailed identification of the specific(More)
Stimulation of dopamine (DA) receptors in the striatum is essential for voluntary motor activity and for the generation of plasticity at corticostriatal synapses. In the present study, mice lacking DA D1 receptors have been used to investigate the involvement of the D1-like class (D1 and D5) of DA receptors in locomotion and corticostriatal long-term(More)
Many animals display specific internal or external features with left-right asymmetry. In vertebrates, the molecular pathway that leads to this asymmetry uses the signalling molecule Nodal, a member of the transforming growth factor-beta superfamily, which is expressed in the left lateral plate mesoderm, and loss of nodal function produces a randomization(More)
BACKGROUND Studies have shown that neuroleptics regulate expression of the transcription factor FosB/DeltaFosB in the striatum, including the accumbens and caudate-putamen; however, the striatum is also divided into another structural dimension, the striosome and matrix compartments. The precise distribution of FosB/DeltaFosB induced by chronic neuroleptics(More)
The use of genetically engineered mice has provided substantial new insights into the functional organization of the striatum. Increasing evidence suggests that specific genes expressed within the striatum contribute to its functional activity. We studied the dopamine (DA) D1 receptor gene and one of its downstream targets, the transcription factor c-Fos.(More)
BACKGROUND The Neogastropoda is a highly diversified group of predatory marine snails (Gastropoda: Caenogastropoda). Traditionally, its monophyly has been widely accepted based on several morphological synapomorphies mostly related with the digestive system. However, recent molecular phylogenetic studies challenged the monophyly of Neogastropoda due to the(More)
BACKGROUND Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary(More)
With more than 100000 living species, mollusks are the second most diverse metazoan phylum. The current taxonomic classification of mollusks recognizes eight classes (Neomeniomorpha, Chaetodermomorpha, Polyplacophora, Monoplacophora, Cephalopoda, Gastropoda, Bivalvia, and Scaphopoda) that exhibit very distinct body plans. In the past, phylogenetic(More)
Animals as diverse as humans, flies, crabs, and snails show overall bilateral symmetry, but each species has specific structures and organs that display left/right asymmetry, and the presence of these asymmetries is vital to the organism. Here, we review recent results showing that part of the molecular pathway that sets left/right asymmetry in vertebrates(More)