Cristina David

Learn More
Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In recent years, separation logic has emerged as a contender for formal reasoning of pointer-based programs. Recent works have focused on specialized provers that are mostly based on fixed sets of predicates. In this paper, we propose an(More)
Despite their popularity and importance, pointerbased programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range(More)
By combining algorithmic learning, decision procedures, predicate abstraction, and simple templates, we present an automated technique for finding quantified loop invariants. Our technique can find arbitrary first-order invariants (modulo a fixed set of atomic propositions and an underlying SMT solver) in the form of the given template and exploits the(More)
Proving program termination is key to guaranteeing absence of undesirable behaviour, such as hanging programs and even security vulnerabilities such as denial-of-service attacks. To make termination checks scale to large systems, interprocedural termination analysis seems essential, which is a largely unexplored area of research in termination analysis,(More)
Conventional specifications for object-oriented (OO) programs must adhere to behavioral subtyping in support of class inheritance and method overriding. However, this requirement inherently weakens the specifications of overridden methods in superclasses, leading to imprecision during program reasoning. To address this, we advocate a fresh approach to OO(More)
Proving program termination is typically done by finding a well-founded ranking function for the program states. Existing termination provers typically find ranking functions using either linear algebra or templates. As such they are often restricted to finding linear ranking functions over mathematical integers. This class of functions is insufficient for(More)
Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counterexample guided inductive synthesis that automates the design of digital controllers that are correct by construction. The synthesis result is sound with respect to the complete range(More)
Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach supports user-definable shape predicates that allow programmers to describe a(More)
Conventional specifications typically have a flat structure that is based primarily on the underlying logic. Such specifications lack structures that could have provided better guidance to the verification process. In this work, we propose to add three new structures to a specification framework for separation logic to achieve a more precise and better(More)