Learn More
Ultra-short echo-time proton single voxel spectra of rat brain were obtained on a 14.1T 26 cm horizontal bore system. At this field, the fitted linewidth in the brain tissue of adult rats was about 11 Hz. New, separated resonances ascribed to phosphocholine, glycerophosphocholine and N-acetylaspartate were detected for the first time in vivo in the spectral(More)
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data(More)
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to(More)
By quantification of brain metabolites, localized brain proton MRS can non-invasively provide biochemical information from distinct regions of the brain. Quantification of short-TE signals is usually based on a metabolite basis set. The basis set can be obtained by two approaches: (1) by measuring the signals of metabolites in aqueous solution; (2) by(More)
The broad resonances underlying the entire (1) H NMR spectrum of the brain, ascribed to macromolecules, can influence metabolite quantification. At the intermediate field strength of 3 T, distinct approaches for the determination of the macromolecule signal, previously used at either 1.5 or 7 T and higher, may become equivalent. The aim of this study was to(More)
Localized proton Magnetic Resonance Spectroscopy brain signals acquired at short echo-time contain contributions from metabolites, water and a ;background' which mainly originates from macromolecules and lipids. The purpose of the present study was to compare the influence of the background-accommodation strategy on the metabolite concentration estimates.(More)
The development of new diagnostic criteria for Alzheimer's disease (AD) requires new in vivo markers reflecting early pathological changes in the brain of patients. Magnetic resonance (MR) spectroscopy has been shown to provide useful information about the biochemical changes occurring in AD brain in vivo. The development of numerous transgenic mouse models(More)
* Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neuro-chemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T 1. To minimize effects of(More)
In (1)H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure(More)
Brain glutamine synthetase (GS) is an integral part of the glutamate-glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. (15)N MRS is an alternative approach to (13)C MRS. Incorporation of labeled (15)N from ammonia in(More)