Cristina Amat di San Filippo

Learn More
Carnitine plays an essential role in the transfer of long-chain fatty acids across the inner mitochondrial membrane. This transfer requires enzymes and transporters that accumulate carnitine within the cell (OCTN2 carnitine transporter), conjugate it with long chain fatty acids (carnitine palmitoyl transferase 1, CPT1), transfer the acylcarnitine across the(More)
Primary carnitine deficiency is a disorder of fatty acid oxidation caused by mutations in the Na+-dependent carnitine/organic cation transporter OCTN2. Studies with tyrosyl group-modifying reagents support the involvement of tyrosine residues in Na+ binding by sodium-coupled transporters. Here we report two new patients with carnitine deficiency caused by(More)
X-linked cerebral creatine deficiency is caused by the deficiency of the creatine transporter encoded by the SLC6A8 gene. Here, we report two half-brothers with this condition and characterize creatine transport in human fibroblasts. The propositus presented at 6 months of age with delays in development and slow progress since then with no regression.(More)
Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation resulting from defective carnitine transport. This disease is caused by mutations in the OCTN2 carnitine transporter encoded by the SLC22A5 gene. Here we validate dye-binding/high-resolution thermal denaturation as a screening procedure to identify novel mutations in(More)
Carnitine is essential for the transfer of long-chain fatty acids across the mitochondrial membrane for subsequent beta-oxidation. A defect in the high-affinity carnitine transporter OCTN2 causes autosomal recessive primary carnitine deficiency that can present with hypoketotic hypoglycemia, mainly in infancy or cardiomyopathy. Heterozygotes for primary(More)
Deficiency of carnitine/acylcarnitine translocase (CACT) is an autosomal recessive disorder of the carnitine cycle resulting in the inability to transfer fatty acids across the inner mitochondrial membrane. Only a limited number of affected patients have been reported and the effect of therapy on this condition is still not well defined. Here, we report a(More)
Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation characterized by hypoketotic hypoglycemia and skeletal and cardiac myopathy. It is caused by mutations in the Na+-dependent organic cation transporter, OCTN2. To define the domains involved in carnitine recognition, we evaluated chimeric transporters created by swapping(More)
Primary carnitine deficiency is a recessive disorder caused by heterogeneous mutations in the SLC22A5 gene encoding the OCTN2 carnitine transporter. Here we extend mutational analysis to eight new families with this disorder. To determine the mechanism by which missense mutations impaired carnitine transport, the OCTN2 transporter was tagged with the green(More)
  • 1