Learn More
In this report some algorithms for 2D segmentation, feature detection and fitting are presented. The features discussed here consist of three geometric primitives: lines, circles and ellipses. The segmentation process, whose objective is grouping segments that belong to the same object, is analysed using several kinds of algorithms. Results are presented(More)
This paper presents a sensorial-cooperative architecture to detect, track and classify entities in semi-structured outdoor scenarios for intelligent vehicles. In order to accomplish this task, information provided by in-vehicle Lidar and monocular vision is used. The detection and tracking phases are performed in the laser space, and the object(More)
Why is pedestrian detection still very challenging in realistic scenes? How much would a successful solution to monocular depth inference aid pedestrian detection? In order to answer these questions we trained a state-of-the-art deformable parts detector using different configurations of optical images and their associated 3D point clouds, in conjunction(More)
A perception system for pedestrian detection in urban scenarios using information from a LIDAR and a single camera is presented. Two sensor fusion architectures are described, a centralized and a decentralized one. In the former, the fusion process occurs at the feature level, i.e., features from LIDAR and vision spaces are combined in a single vector for(More)
Intelligent vehicles need reliable information about the environment in order to operate with total safety. In this paper we propose a flexible multi-module architecture for a multi-target detection and tracking system (MTDTS) complemented with a Bayesian object classification layer based on finite Gaussian mixture models (GMM). The GMM parameters are(More)
— A multi-module architecture to detect, track and classify objects in semi-structured outdoor scenarios for intelligent vehicles is proposed in this paper. In order to fulfill this task it was used the information provided by a laser range finder (LRF) and a monocular camera. The detection and tracking phases are performed in the LRF space, and the object(More)
Reliable detection and classification of vulnerable road users constitute a critical issue on safety/protection systems for intelligent vehicles driving in urban zones. In this subject, most of the perception systems have LIDAR and/or Radar as primary detection modules and vision-based systems for object classification. This work, on the other hand,(More)
In this work, a context-based multisensor system, applied for pedestrian detection in urban environment, is presented. The proposed system comprises three main processing modules: (i) a LIDAR-based module acting as primary object detection, (ii) a module which supplies the system with contextual information obtained from a semantic map of the roads, and(More)
In this paper we present a multistage method applied in pedestrian detection using information from a LIDAR and a monocular-camera mounted on an electric vehicle driving in urban scenarios. The proposed method is a cascade of classifiers trained in two subsets of features, one with laser-based features and the other with a set of image-based features. A(More)