Cristiane Helena Squarize

Learn More
Multiple genetic and epigenetic events, including the aberrant expression and function of molecules regulating cell signaling, growth, survival, motility, angiogenesis, and cell cycle control, underlie the progressive acquisition of a malignant phenotype in squamous carcinomas of the head and neck (HNSCC). In this regard, there has been a recent explosion(More)
Epidermal integrity is a complex process established during embryogenesis and maintained throughout the organism lifespan by epithelial stem cells. Although Wnt regulates normal epithelial stem cell renewal, aberrant Wnt signaling can contribute to cancerous growth. Here, we explored the consequences of persistent expressing Wnt1 in an epidermal compartment(More)
The development of head and neck squamous cell carcinoma (HNSCC) involves the accumulation of genetic and epigenetic alterations in tumor-suppressor proteins, together with the persistent activation of growth-promoting signaling pathways. The activation of epidermal growth factor receptor (EGFR) is a frequent event in HNSCC. However, EGFR-independent(More)
Epithelial stem cells in the bulge region within the hair follicle maintain the cyclic hair growth, but whether these stem cells also contribute to the epidermal renewal remains unclear. Here, we observed that the conditional deletion of the Rac1 gene in the mouse skin, including the potential follicular and epidermal stem cell compartments, results in(More)
BACKGROUND The regenerative capacity of the skin, including the continuous replacement of exfoliated cells and healing of injuries relies on the epidermal stem cells and their immediate cell descendants. The relative contribution of the hair follicle stem cells and the interfollicular stem cells to dermal wound healing is an area of active investigation.(More)
BACKGROUND The management of slow or non-healing ulcerations constitutes an increasing clinical challenge in the developed world because of the ageing of the population and the pandemic rise in type II diabetes. Recent studies suggest that molecular circuitries deployed by tumor cells to promote cancerous growth may also contribute to tissue regeneration.(More)
PTEN is a tumor suppressor gene that encodes a dual phosphatase protein capable of modulating membrane receptors and interaction of the cell and extracellular stimuli. PTEN regulates cell physiology such as division, differentiation/apoptosis and also migration and adhesion. The expression of PTEN was evaluated by immunohistochemistry in OSCC and compared(More)
The sequencing of the head and neck cancer has provided a blueprint of the most frequent genetic alterations in this cancer type. They include inactivating mutations in Notch, p53, and p16(ink4a) tumor suppressor genes, in addition to nonoverlapping activating mutations of the PIK3CA and RAS oncogenes or inactivation of the tumor suppressor gene PTEN.(More)
Cowden's disease is an autosomal dominant disorder characterized by the development of multiple mucocutaneous lesions and benign tumors, and enhanced cancer predisposition. Most Cowden's disease patients harbor inactivating mutations in the PTEN tumor suppressor gene which encodes a lipid phosphatase, PTEN, which restrains the phosphatidylinositol(More)