Learn More
It has been recently demonstrated that the 43-kDa transactive response (TAR)-DNA-binding protein (TARDBP) is the neuropathological hallmark of Frontotemporal Dementia (FTD) with ubiquitin-positive and tau-negative inclusions. Large series of FTD patients without motor neuron disease have been previously analysed, but no TARDBP mutation was identified. The(More)
TDP-43 has recently been described as the major component of the inclusions found in the brain of patients with a variety of neurodegenerative diseases, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 is a ubiquitous protein whose specific functions are probably crucial to establishing its pathogenic role. Apart from its(More)
Nuclear factor TDP-43 has been reported to play multiple roles in transcription, pre-mRNA splicing, mRNA stability and mRNA transport. From a structural point of view, TDP-43 is a member of the hnRNP protein family whose structure includes two RRM domains flanked by the N-terminus and C-terminal regions. Like many members of this family, the C-terminal(More)
TDP-43 is one of the major components of the neuronal and glial inclusions observed in several neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. These characteristic aggregates are a "landmark" of the disease, but their role in the pathogenesis is still obscure. In previous works, we have shown that the(More)
Human TDP-43 represents the main component of neuronal inclusions found in patients with neurodegenerative diseases, especially frontotemporal lobar degeneration and amyotrophic lateral sclerosis. In vitro and in vivo studies have shown that the TAR DNA-binding protein 43 (TDP-43) Drosophila ortholog (TBPH) can biochemically and functionally overlap the(More)
Sortilin 1 regulates the levels of brain progranulin (PGRN), a neurotrophic growth factor that, when deficient, is linked to cases of frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43)-positive inclusions (FTLD-TDP). We identified a specific splicing enhancer element that regulates the inclusion of a sortilin exon cassette (termed(More)
TDP-43 is a nuclear protein involved in many aspects of RNA metabolism. To ensure cellular viability, its expression levels within cells must be tightly regulated. We have previously demonstrated that TDP-43 autoregulation occurs through the activation of a normally silent intron in its 3'-UTR sequence that results in the use of alternative polyadenylation(More)
The intronic splicing silencer (ISS) of CFTR exon 9 promotes exclusion of this exon from the mature mRNA. This negative influence has important consequences with regards to human pathologic events, as lack of exon 9 correlates well with the occurrence of monosymptomatic and full forms of CF disease. We have previously shown that the ISS element interacts(More)
In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5' and 3' splice sites. A GTAA deletion within(More)
Deficiency of lysosomal acid lipase (LAL) leads to either Wolman disease (WD) or the more benign cholesteryl ester storage disease (CESD). To identify the molecular basis of the different phenotypes we have characterised the LAL gene mutations in three new patients with LAL deficiency. A patient with WD was homozygote for a null allele Y303X. The other two(More)