Cristian T. Badea

Learn More
Small-animal imaging has a critical role in phenotyping, drug discovery and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo x-ray based small-animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and(More)
PURPOSE Demonstrate noninvasive imaging methods for in vivo characterization of cardiac structure and function in mice using a micro-CT system that provides high photon fluence rate and integrated motion control. MATERIALS AND METHODS Simultaneous cardiac- and respiratory-gated micro-CT was performed in C57BL/6 mice during constant intravenous infusion of(More)
Cardiopulmonary imaging in rodents using micro-computed tomography (CT) is a challenging task due to both cardiac and pulmonary motion and the limited fluence rate available from micro-focus x-ray tubes of most commercial systems. Successful imaging in the mouse requires recognition of both the spatial and temporal scales and their impact on the required(More)
The objective of this study was to determine the feasibility of delayed-enhancement micro-computed tomography (microCT) imaging to quantify myocardial infarct size in experimental mouse models. A total of 20 mice were imaged 5 or 35 days after surgical ligation of the left coronary artery or sham surgery (n=6 or 7 per group). We utilized a prototype microCT(More)
Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed(More)
Recent advances in murine cardiac studies with three-dimensional (3D) cone beam micro-CT used a retrospective gating technique. However, this sampling technique results in a limited number of projections with an irregular angular distribution due to the temporal resolution requirements and radiation dose restrictions. Both angular irregularity and(More)
The purpose of this work is to investigate the use of dual-energy micro-computed tomography (CT) for the estimation of vascular, tissue, and air fractions in rodent lungs using a postreconstruction three material decomposition method. Using simulations, we have estimated the accuracy limits of the decomposition for realistic micro-CT noise levels. Next, we(More)
Among the iterative reconstruction algorithms for tomography, the multiplicative algebraic reconstruction technique (MART) has two advantages that make it stand out from other algorithms: it confines the image (and therefore the projection data) to the convex hull of the patient, and it maximizes entropy. In this paper, we have undertaken a series of(More)
The objective of this study was to compare a new generation of four-dimensional micro-single photon emission computed tomography (microSPECT) with microCT for the quantitative in vivo assessment of murine cardiac function. Four-dimensional isotropic cardiac images were acquired from anesthetized normal C57BL/6 mice with either microSPECT (n = 6) or microCT(More)