Cristian Iacovita

Learn More
The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus.(More)
We report a fast, one-step, facile, and green preparation method that yields very stable and biocompatible silver colloids that are highly active as surface-enhanced Raman spectroscopy (SERS) platforms that has a possible application in biomedicine. Reduction of silver nitrate has been carried out using polyethylene glycol (PEG) which acts as both reducing(More)
Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the(More)
Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe₃O₄-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by(More)
The multifunctional nanoobjects that can be controlled, manipulated and triggered using external stimuli represent very promising candidates for nanoscale therapeutic and diagnostic applications. In this study we report the successful synthesis and characterization of a new class of very stable multifunctional nanoobjects, containing cationic liposomes(More)
The nanoparticles mediated enantioselective recognition of propranolol enantiomers through native cyclodextrin complexation has been investigated by using surface-enhanced Raman spectroscopy (SERS). The highly efficient chiral recognition mechanism is based on a synergistic interaction between spherical noble metal nanoparticles, propranolol enantiomers and(More)
We exploit several scanning tunneling microscopy (STM) techniques, such as atom manipulated scans and constant-height scans, to atomically resolve the adsorption geometry of isolated cobalt-phthalocyanine (CoPc) molecules on a copper (111) surface and to obtain proper low-temperature maps of the molecular conductance. By comparing these crucial findings to(More)
Repulsive interactions: a staging of supramolecular aggregation from (0D) clusters to (1D) chains and (2D) assemblies as a function of molecular coverage of dipolar porphyrins adsorbed on the Ag(111) surface is described. It displays a complex interplay of both attractive and repulsive molecule-molecule interactions, the emergence of chirality, and the(More)
Sublimation of alkali halides (NaCl and LiCl) onto a pre-assembled hydrogen-bonded layer of TCNQ on Au(111) resulted in the formation of 2D ionic layers via a direct charge-transfer reaction without involvement of the substrate. The presented approach allows for the fabrication of different ionic layers, decoupled from the substrate and offering new,(More)