Cristian González-Cabrera

Learn More
When a salient object in the visual field captures attention, the neural representation of that object is enhanced at the expense of competing stimuli. How neural activity evoked by a salient stimulus evolves to take precedence over the neural activity evoked by other stimuli is a matter of intensive investigation. Here, we describe in pigeons (Columba(More)
The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could(More)
The optic tectum in birds and its homologue the superior colliculus in mammals both send major bilateral, nontopographic projections to the nucleus rotundus and caudal pulvinar, respectively. These projections originate from widefield tectal ganglion cells (TGCs) located in layer 13 in the avian tectum and in the lower superficial layers in the mammalian(More)
The avian pretectal and ventrothalamic nuclei, encompassing the griseum tectale (GT), n. lentiformis mesencephali (LM), and n. geniculatus lateralis pars ventralis (GLv), are prominent retinorecipient structures related to optic flow operations and visuomotor control. Hence, a close coordination of these neural circuits is to be expected. Yet the(More)
Retinal inputs to the optic tectum (TeO) triggered by moving stimuli elicit synchronized feedback signals from two isthmic nuclei: the isthmi parvocelullaris (Ipc) and isthmi semilunaris (SLu). Both of these nuclei send columnar axon terminals back to the same tectal position receiving the retinal input. The feedback signals from the Ipc seem to act as an(More)
  • 1