Cristian Arteaga

  • Citations Per Year
Learn More
For μ≥-1/2, the authors have developed elsewhere a scheme for interpolation by Hankel translates of a basis function Φ in certain spaces of continuous functions Yn(n∈ℕ) depending on a weight w. The functions Φ and w are connected through the distributional identity t4n(hμ'Φ)(t)=1/w(t), where hμ' denotes the generalized Hankel transform of order μ. In this(More)
Golomb and Weinberger [1] described a variational approach to interpolation which reduced the problem to minimizing a norm in a reproducing kernel Hilbert space generated by means of a small number of data points. Later, Duchon [2] defined radial basis function interpolants as functions which minimize a suitable seminorm given by a weight in spaces of(More)
  • 1