Learn More
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large(More)
Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that(More)
Efficient cellulolytic enzymes are needed to degrade recalcitrant plant biomass during ethanol purification and make lignocellulosic biofuels a cost-effective alternative to fossil fuels. Despite the large number of insect species that feed on lignocellulosic material, limited availability of quantitative studies comparing cellulase activity among insect(More)
Tribolium castaneum is an important agricultural pest and an advanced genetic model for coleopteran insects. We have taken advantage of the recently acquired T. castaneum genome to identify T. castaneum genes and proteins in one of the more critical environmental interfaces of the insect, the larval alimentary tract. Genetic transcripts isolated from the T.(More)
Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor(More)
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a(More)
Cellulosic ethanol has been identified as a crucial biofuel resource due to its sustainability and abundance of cellulose feedstocks. However, current methods to obtain glucose from lignocellulosic biomass are ineffective due to recalcitrance of plant biomass. Insects have evolved endogenous and symbiotic enzymes to efficiently use lignocellulosic material(More)
Cry toxins produced by Bacillus thuringiensis bacteria are environmentally safe alternatives to control insect pests. They are pore-forming toxins that specifically affect cell permeability and cellular integrity of insect-midgut cells. In this work we analyzed the defensive response of Aedes aegypti larva to Cry11Aa toxin intoxication by proteomic and(More)
Postmating, prezygotic phenotypes, especially those that underlie reproductive isolation between closely related species, have been a central focus of evolutionary biologists over the past two decades. Such phenotypes are thought to evolve rapidly and be nearly ubiquitous among sexually reproducing eukaryotes where females mate with multiple partners.(More)
Coccidian oöcysts recovered from the faeces of eastern ringneck snakes, Diadophis punctatus arnyi, from Kansas, USA were found to represent a previously unreported eimerian. Oöcysts of Eimeria arnyi n. sp. are subspherical, 16.9×15.1 (15–18.5×13.5–16) μm, with a thin, single-layered wall and a shape-index (length/width) of 1.1 (1.1–1.3). A micropyle and(More)