Learn More
A bacterial phylogenetic survey of three environmentally distinct Antarctic Dry Valley soil biotopes showed a high proportion of so-called "uncultured" phylotypes, with a relatively low diversity of identifiable phylotypes. Cyanobacterial phylotypic signals were restricted to the high-altitude sample, whereas many of the identifiable phylotypes, such as the(More)
Hypolithic communities represent important reservoirs of microbial life in hyper-arid deserts. A number of studies on the diversity and ecology of these communities from different geographic areas have been reported in the past decade, but the spatial distribution of the different components of these communities is still not understood. Moss- and(More)
Quantitative real-time PCR (QPCR) is an extremely powerful and sensitive method for quantitative detection of microorganisms. In contrast to end-point analysis by conventional PCR, real-time detection by QPCR measures the change in product concentration as an increase in fluorescence (∆Rn) during each PCR cycle (Heid et al. 1996). The fractional cycle(More)
The McMurdo Dry Valleys collectively comprise the most extensive ice-free region in Antarctica and are considered one of the coldest arid environments on Earth. In low-altitude maritime-associated valleys, mineral soil profiles show distinct horizontal structuring, with a surface arid zone overlying a moist and biologically active zone generated by(More)
Vestimentiferan tube worms from deep-sea hydrothermal vents and cold-water seeps rely entirely on sulfur-oxidizing bacterial endosymbionts for nutriment. We examined host-symbiont co-evolution by comparing phylogenetic trees from symbiont 16S ribosomal DNA and host mitochondrial COI genes. The endosymbionts comprised two distinct clades, one associated with(More)
Much of the Earth's surface, both marine and terrestrial, is either periodically or permanently cold. Although habitats that are largely or continuously frozen are generally considered to be inhospitable to life, psychrophilic organisms have managed to survive in these environments. This is attributed to their innate adaptive capacity to cope with cold and(More)
In November 2005, at least five dogs died rapidly after contact with water from the Hutt River (lower North Island, New Zealand). Necropsy performed 24h later on one of the dogs (a 20-month-old Labrador) revealed few findings of interest, except for copious amounts of froth in the respiratory tract down to the bifurcation of the trachea and large quantities(More)
The ability of cold-adapted microorganisms (generally referred to as psychrophiles) to survive is the result of molecular evolution and adaptations which, together, counteract the potentially deleterious effects of low kinetic energy environments and the freezing of water. These physiological adaptations are seen at many levels. Against a background of(More)
In order to facilitate the evaluation of archaeal community diversity and distribution in high-temperature environments, 14 16S rRNA oligonucleotide probes were designed. Adequate hybridization and wash conditions of the probes encompassing most known hyperthermophilic Archaea, members of the orders Thermococcales, Desulfurococcales and Sulfolobales, of the(More)
A temperate phage, Psymv2, was isolated from an Antarctic soil bacterium, Psychrobacter sp. MV2. The morphology of Psymv2 was typical of the Siphoviridae, with an isometric head and non-contractile tail. The Psymv2 genome was found to be 35,725 bp in length, had a G + C content of 44.5 %, with 49 protein-coding genes and one tRNA gene predicted. Integration(More)