Learn More
The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered(More)
We present nanoNS3, a network simulator for modeling Bacterial Molecular Communication (BMC) networks. nanoNS3 is built atop the Network Simulator 3 (ns-3). nanoNS3 is designed to achieve the following goals: 1) accurately and realistically model real world BMC, 2) maintain high computational efficiency, 3) allow newly designed protocols to be implemented(More)
—In this work we consider nano-scale communication using bacterial populations as transceivers. We demonstrate using a microfluidic test-bed and a population of genetically engineered Escherichia coli bacteria serving as the communication receiver that a simple modulation like on-off keying (OOK) is indeed achievable, but suffers from very poor data-rates.(More)
The sampling of the bacterial signal transduction is investigated for molecular communication (MC). It is assumed that the finite-duration amplitude modulated, i.e., pulse-amplitude modulated (PAM), concentration of a certain type of molecule is used for information transmission. The bacterial signaling pathway is modified to transduce the input molecules(More)
  • 1