Learn More
Two variants of a widely used two-compartment model were prepared for fitting the time course of [1,6-(13)C2]glucose metabolism in rat brain. Features common to most models were included, but in one model the enrichment of the substrates entering the glia and neuronal citric acid cycles was allowed to differ. Furthermore, the models included the capacity to(More)
Proton NMR spectroscopy at 7 Tesla (7T) was evaluated as a new method to quantify human fat composition noninvasively. In validation experiments, the composition of a known mixture of triolein, tristearin, and trilinolein agreed well with measurements by (1)H NMR spectroscopy. Triglycerides in calf subcutaneous tissue and tibial bone marrow were examined in(More)
The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain(More)
A kinetic model of the citric acid cycle for calculating oxygen consumption from (13)C nuclear magnetic resonance (NMR) multiplet data has been developed. Measured oxygen consumption (MVO(2)) was compared with MVO(2) predicted by the model with (13)C NMR data obtained from rat hearts perfused with glucose and either [2-(13)C]acetate or [3-(13)C]pyruvate.(More)
It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to(More)
Measuring intracellular metabolism has increasingly led to important insights in biomedical research. (13)C tracer analysis, although less information-rich than quantitative (13)C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway(More)
Glycine is a key metabolic intermediate required for the synthesis of proteins, nucleic acids, and other molecules, and its detection in cancer could, therefore, provide biologically relevant information about the growth of the tumor. Here, we report measurement of glycine in human brain and gliomas by an optimized point-resolved spectroscopy sequence at 3(More)
Intracellular [Na+], [H+], and [ATP] and mechanical performance were measured in the isovolumic perfused rat heart during ischemia. The concentration of intracellular sodium, [Na+]i, was determined by atomic absorption spectroscopy under control conditions, and [Na+]i was monitored by 23Na NMR spectroscopy at 1-min intervals under control conditions and(More)
It has been shown previously that for constant magnetic field gradients, constant velocity flow leads to even-echo rephasing for all echo delay times. We show that for flow which is not pluglike, even-echo rephasing also occurs for the pulsed readout gradients used in magnetic resonance imaging if and only if the gradients begin at the time the 90 degrees(More)
Hepatic glucose synthesis from glycogen, glycerol, and the tricarboxylic acid (TCA) cycle was measured in five overnight-fasted subjects by (1)H, (2)H, and (13)C NMR analysis of blood glucose, urinary acetaminophen glucuronide, and urinary phenylacetylglutamine after administration of [1,6-(13)C(2)]glucose, (2)H(2)O, and [U-(13)C(3)]propionate. This(More)