Craig M. Goehler

Learn More
Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive(More)
This study utilizes a biomechanical model of the thumb to estimate the force produced at the thumb-tip by each of the four extrinsic muscles. We used the principle of virtual work to relate joint torques produced by a given muscle force to the resulting endpoint force and compared the results to two separate cadaveric studies. When we calculated thumb-tip(More)
To produce a torque about a joint in the human body there must be sufficient drive to excite motor neurones in the spinal cord to discharge action potentials. The number of motor neurones that are recruited, and the rate at which those motor neurones discharge action potentials, is directly linked to the summation of twitch forces in the muscle. However,(More)
Current methods for developing manipulator Jacobian matrices are based on traditional kinematic descriptions such as Denavit and Hartenberg parameters. The resulting symbolic equations for these matrices become cumbersome and computationally inefficient when dealing with more complex spatial manipulators, such as those seen in the field of biomechanics.(More)
  • 1