Learn More
Brain function can be mapped with magnetic resonance (MR) imaging sensitized to regional changes in blood oxygenation due to cortical activation. Several MR imaging methods, including conventional imaging and echo-planar imaging, have been successfully used for this purpose. The authors investigated spiral k-space MR imaging, implemented with an unmodified(More)
A technique is described for discriminating blood-oxygen-level-dependent (BOLD) signal changes originating from large venous vessels and those that arise from the cortical parenchyma based on examining the temporal delay of each pixel's response. Photic stimulation experiments were performed with a conventional 1.5 T scanner and correlated each pixel's(More)
A flow-independent method for imaging the coronary arteries within a breath-hold on a standard whole-body MR imager was developed. The technique is based on interleaved spiral k-space scanning and forms a cardiac-gated image in 20 heartbeats. The spiral readouts have good flow properties and generate minimal flow artifacts. The oblique slices are positioned(More)
When time-varying gradients are used for imaging, the off-resonance behavior does not just cause geometric distortion as is the case with spin-warp imaging, but changes the shape of the impulse response and causes blurring. This effect is well known for projection reconstruction and spiral k-space scanning sequences. The authors introduce a reconstruction(More)
The maximum smooth pursuit eye velocity was determined in five human subjects. Eye movements were recorded with the d.c.-coupled EOG. On each trial the target moved in a ramp, at a constant velocity between 10 and 200 deg/sec. In four subjects eye velocity was approximately 90% of target velocity up to a target velocity of 100 deg/sec. Eye velocity then(More)
A real-time interactive MRI system capable of localizing coronary arteries and imaging arrhythmic hearts in real-time is described. Non-2DFT acquisition strategies such as spiral-interleaf, spiral-ring, and circular echo-planar imaging provide short scan times on a conventional scanner. Real-time gridding reconstruction at 8-20 images/s is achieved by(More)
In the technique known as gridding, the data samples are weighted for sampling density and convolved with a finite kernel, then resampled on a grid preparatory to a fast Fourier transform. The authors compare the artifact introduced into the image for various convolving functions of different sizes, including the Kaiser-Bessel window and the zero-order(More)
In fields ranging from radio astronomy to magnetic resonance imaging, Fourier inversion of data not falling on a Cartesian grid has been a prbblem. As a result, multiple algorithms have been created for reconstructing images from non-uniform frequency samples. In the technique known as grid-ding, the data samples are weighted for sampling density and(More)
For several non-2D Fourier transform imaging methods, off-resonant reconstruction does not just cause geometric distortion, but changes the shape of the point spread function and causes blurring. This effect is well known for projection reconstruction and spiral k-space scanning sequences. We introduce here a method that automatically removes blur(More)
The imaging of dynamic processes in the body is of considerable interest in interventional examinations as well as kinematic studies, and spiral imaging is a fast magnetic resonance imaging technique ideally suited for such fluoroscopic applications. In this manuscript, magnetic resonance fluoroscopy pulse sequences in which interleaved spirals are used to(More)