Learn More
Rapid glutamatergic synaptic transmission is mediated by ionotropic glutamate receptors and depends on their precise localization at postsynaptic membranes opposing the presynaptic neurotransmitter release sites. Postsynaptic localization of N-methyl-D-aspartate-type glutamate receptors may be mediated by the synapse-associated proteins (SAPs) SAP90,(More)
The active zone is a specialized region of the presynaptic plasma membrane where synaptic vesicles dock and fuse. In this study, we have investigated the cellular mechanism underlying the transport and recruitment of the active zone protein Piccolo into nascent synapses. Our results show that Piccolo is transported to nascent synapses on an approximately 80(More)
Regulation of AMPA receptor (AMPAR) trafficking is important for neural plasticity. Here we examined the trafficking and synthesis of the GluR1 and GluR2 subunits using ReAsH-EDT(2) and FlAsH-EDT(2) staining. Activity blockade of rat cultured neurons increased dendritic GluR1, but not GluR2, levels. Examination of transected dendrites revealed that both(More)
Time-lapse microscopy, retrospective immunohistochemistry, and cultured hippocampal neurons were used to determine the time frame of individual glutamatergic synapse assembly and the temporal order in which specific molecules accumulate at new synaptic junctions. New presynaptic boutons capable of activity-evoked vesicle recycling were observed to form(More)
Synapse-associated proteins (SAPs) are constituents of the pre- and postsynaptic submembraneous cytomatrix. Here, we present SAP102, a novel 102kDa SAP detected in dendritic shafts and spines of asymmetric type 1 synapses. SAP102 is enriched in preparations of synaptic junctions, where it biochemically behaves as a component of the cortical cytoskeleton.(More)
Synaptic vesicles belong to two distinct pools, a recycling pool responsible for the evoked release of neurotransmitter and a resting pool unresponsive to stimulation. The uniform appearance of synaptic vesicles has suggested that differences in location or cytoskeletal association account for these differences in function. We now find that the v-SNARE(More)
We have recently isolated a novel proline-rich synapse-associated protein-1 (ProSAP1) that is highly enriched in postsynaptic density (PSD). A closely related multidomain protein, ProSAP2, shares a highly conserved PDZ (PSD-95/discs-large/ZO-1) domain (80% identity), a ppI domain that mediates the interaction with cortactin, and a C-terminal SAM (sterile(More)
The formation of synapses in the vertebrate central nervous system is a complex process that occurs over a protracted period of development. Recent work has begun to unravel the mysteries of synaptogenesis, demonstrating the existence of multiple molecules that influence not only when and where synapses form but also synaptic specificity and stability. Some(More)
Synapses are highly specialized sites of cell-cell contact involved in signal transfer. The molecular mechanisms modulating the assembly and stability of synapses are unknown. We previously reported the identification of a 90 kDa synapse-associated protein, SAP90, that is localized at the presynaptic termini of inhibitory GABAergic synapses. SAP90 is a(More)