Craig Boutilier

Learn More
Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a(More)
Planning under uncertainty is a central problem in the study of automated sequential decision making and has been addressed by researchers in many di erent elds including AI planning decision analysis operations research control theory and economics While the assumptions and perspectives adopted in these areas often di er in substantial ways many planning(More)
Reinforcement learning can provide a robust and natural means for agents to learn how to coordinate their action choices in multiagent systems. We examine some of the factors that can influence the dynamics of the learning process in such a setting. We first distinguish reinforcement learners that are unaware of (or ignore) the presence of other agents from(More)
Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that uses algebraic decision diagrams (ADDs) to represent value(More)
Bayesiannetworks provide a languagefor qualitatively representing the conditional independence properties of a distribution. This allows a natural and compact representation of the distribution, eases knowledge acquisition, and supports effective inference algorithms. It is well-known, however, that there are certain independencies that we cannot capture(More)
Markov decision processes (MDPs) have proven to be popular models for decision-theoretic planning, but standard dynamic programming algorithms for solving MDPs rely on explicit, state-based specifications and computations. To alleviate the combinatorial problems associated with such methods, we propose new representational and computational techniques for(More)
In many domains it is desirable to assess the preferences of users in a qualitative rather than quantitative way. Such representations of qualitative preference orderings form an important component of automated decision tools. We propose a graphical representation of preferences that reflects conditional dependence and independence of preference statements(More)
We present a logic for representing and reasoning with qualitative statements of preference and normality and describe how these may interact in decision making under uncertainty. Our aim is to develop a logical calculus that employs the basic elements of classical decision theory, namely probabilities, utilities and actions, but exploits qualitative(More)