Craig Altier

Learn More
Salmonella typhimurium causes enteric and systemic disease by invading the intestinal epithelium of the distal ileum, a process requiring the invasion genes of Salmonella pathogenicity island 1 (SPI-1). BarA, a sensor kinase postulated to interact with the response regulator SirA, is required for the expression of SPI-1 invasion genes. We found, however,(More)
Penetration of intestinal epithelial cells by Salmonella enterica serovar Typhimurium requires the expression of invasion genes, found in Salmonella pathogenicity island 1 (SPI1), that encode components of a type III secretion apparatus. These genes are controlled in a complex manner by regulators within SPI1, including HilA and InvF, and those outside(More)
To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate the intestinal epithelial barrier. This process of invasion requires a type III secretion system encoded within Salmonella pathogenicity island I (SPI1). We found that a mutant with deletions of the acetate kinase and phosphotransacetylase genes (ackA-pta) was deficient in(More)
An early step in the pathogenesis of non-typhoidal Salmonella species is the ability to penetrate the intestinal epithelial monolayer. This process of cell invasion requires the production and transport of secreted effector proteins by a type III secretion apparatus encoded in Salmonella pathogenicity island I (SPI-1). The control of invasion involves a(More)
BACKGROUND LuxR-type transcription factors are typically used by bacteria to determine the population density of their own species by detecting N-acylhomoserine lactones (AHLs). However, while Escherichia and Salmonella encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other(More)
The csr regulatory system of Salmonella regulates the expression of the genes of Salmonella pathogenicity island 1 (SPI1) required for the invasion of epithelial cells. This system consists of the posttranscriptional regulator CsrA and an untranslated regulatory RNA, CsrB, that opposes the action of CsrA. Here we identify and characterize the role of a(More)
As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin,(More)
CsrA is a regulator of invasion genes in Salmonella enterica serovar Typhimurium. To investigate the wider role of CsrA in gene regulation, we compared the expression of Salmonella genes in a csrA mutant with those in the wild type using a DNA microarray. As expected, we found that expression of Salmonella pathogenicity island 1 (SPI-1) invasion genes was(More)
Despite increasing incidences of human salmonellosis caused by consumption of contaminated vegetables, relatively little is known about how the plant immune system responds to and may inhibit Salmonella colonization. Here we show that Salmonella Typhimurium activates the plant immune system primarily due to its recognition of the flg22 region in Salmonella(More)
We examined the antimicrobial resistance of 1,257 isolates of 30 serovars of Salmonella enterica subsp. enterica isolated from swine. Serovars Typhimurium and Typhimurium var. Copenhagen were widespread and were frequently multidrug resistant, with distinct resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline and to(More)