Learn More
Hypoxia-inducible factor (HIF) regulates expression of genes involved in adaptation to hypoxia and ischemia. Three prolyl hydroxylases (PHD1-3) underlie oxygen-regulated destruction of HIFalpha chains. We have investigated the organ distribution of the PHDs in the rat, their regulation by hypoxia and changes in local expression after experimental myocardial(More)
Cell culture studies have implicated the oxygen-sensitive hypoxia-inducible factor (HIF) prolyl hydroxylase PHD3 in the regulation of neuronal apoptosis. To better understand this function in vivo, we have created PHD3(-/-) mice and analyzed the neuronal phenotype. Reduced apoptosis in superior cervical ganglion (SCG) neurons cultured from PHD3(-/-) mice is(More)
BACKGROUND Heart failure is associated with deranged cardiac energy metabolism, including reductions of creatine and phosphocreatine. Interventions that increase myocardial high-energy phosphate stores have been proposed as a strategy for treatment of heart failure. Previously, it has not been possible to increase myocardial creatine and phosphocreatine(More)
PURPOSE To establish fast, high-resolution in vivo cine magnetic resonance imaging (cine-MRI) on a vertical 11.7-T MR system and to investigate the stability of normal and failing mouse hearts in the vertical position. MATERIALS AND METHODS To optimize the method on a high-field system, various MR-related parameters, such as relaxation times and the need(More)
RATIONALE Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at(More)
High-resolution magnetic resonance cine imaging (cine-MRI) is a method that allows for a non-invasive assessment of left ventricular function and mass. To perform this quantitation, hearts are imaged from the base to the apex by a stack of two-dimensional images. Thus, analysis of myocardial mass and function by cine-MRI does not rely on geometric(More)
BACKGROUND The role of the creatine kinase (CK)/phosphocreatine (PCr) energy buffer and transport system in heart remains unclear. Guanidinoacetate-N-methyltransferase-knockout (GAMT-/-) mice represent a new model of profoundly altered cardiac energetics, showing undetectable levels of PCr and creatine and accumulation of the precursor(More)
Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale(More)
OBJECTIVE Platelet activation is a feature of cardiovascular disease that is also characterized by endothelial dysfunction. The direct relationship between impaired endothelium-derived NO bioavailability and platelet activation remains unclear. We investigated whether acute inhibition of NO production modulates platelet activation in mice and whether(More)
Conventional methods to quantify infarct size after myocardial infarction in mice are not ideal, requiring either tissue destruction for histology or relying on nondirect measurements such as wall motion. We therefore implemented a fast, high-resolution method to directly measure infarct size in vivo using three-dimensional (3D) late gadolinium enhancement(More)