Learn More
To improve our ability to identify hematopoietic stem cells (HSCs) and their localization in vivo, we compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors (MPPs). Cell surface receptors of the SLAM family, including CD150, CD244, and CD48, were differentially expressed among functionally(More)
In addition to triggering the activation of B- or T-cell antigen receptors, the binding of a ligand to its receptor at the cell surface can sometimes determine the physiological outcome of interactions between antigen-presenting cells, T and B lymphocytes. The protein SLAM (also known as CDw150), which is present on the surface of B and T cells, forms such(More)
Commitment to the T and natural killer T (NKT) cell lineages is determined during alphabeta T cell receptor (TCR)-mediated interactions of common precursors with ligand-expressing cells in the thymus. Whereas mainstream thymocyte precursors recognize major histocompatibility complex (MHC) ligands expressed by stromal cells, NKT cell precursors interact with(More)
X-linked lymphoproliferative disease (XLP) is a fatal immunological disorder that typically manifests following EBV infection. XLP patients exhibit a number of immune defects including abnormal T, B, and NK lymphocyte function. These defects have been attributed to mutations of Src homology 2 domain-containing gene 1A (SH2D1A), the gene encoding signaling(More)
The T and natural killer (NK) cell-specific gene SAP (SH2D1A) encodes a 'free SH2 domain' that binds a specific tyrosine motif in the cytoplasmic tail of SLAM (CD150) and related cell surface proteins. Mutations in SH2D1A cause the X-linked lymphoproliferative disease, a primary immunodeficiency. Here we report that a second gene encoding a free SH2 domain,(More)
The specificity of four cytotoxic T lymphocyte (CTL) clones which recognize class II major histocompatibility complex (MHC) antigens was analyzed. All clones recognized antigens associated with the serologically defined HLA-DRw6 specificity. The activity of two of these clones, JR-2-2 and JR-2-10, could be inhibited by a monoclonal antibody Q 5/13 specific(More)
SAP, the product of the gene mutated in X-linked lymphoproliferative syndrome (XLP), consists of a single SH2 domain that has been shown to bind the cytoplasmic tail of the lymphocyte coreceptor SLAM. Here we describe structures that show that SAP binds phosphorylated and nonphosphorylated SLAM peptides in a similar mode, with the tyrosine or(More)
Mo1, a phagocyte surface glycoprotein heterodimer, is involved in a number of phagocyte adhesion functions such as binding and ingestion of serum-opsonized particles, zymosan-induced degranulation, and superoxide generation. Deficiency of this antigen in humans has been associated with increased susceptibility to recurrent bacterial infections. The beta(More)
Our understanding of the X-linked lymphoproliferative syndrome (XLP) has advanced significantly in the last two years. The gene that is altered in the condition (SAP/SH2D1A) has been cloned and its protein crystal structure solved. At least two sets of target molecules for this small SH2 domain-containing protein have been identified: A family of(More)
X-linked lymphoproliferative disease (XLP) is a rare immune disorder commonly triggered by infection with Epstein-Barr virus. Major disease manifestations include fatal acute infectious mononucleosis, B-cell lymphoma, and progressive dys-gammaglobulinemia. SAP/SH2D1A, the product of the gene mutated in XLP, is a small protein that comprises a single SH2(More)