Courtney L. Erskine

Learn More
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell(More)
BACKGROUND Adjuvant trastuzumab (Herceptin) treatment of breast cancer patients significantly improves their clinical outcome. Vaccination is an attractive alternative approach to provide HER-2/neu (Her2)-specific antibodies and may in addition concomitantly stimulate Her2-reactive T-cells. Here we report the first administration of a Her2-plasmid DNA(More)
Studies have shown that the immune system can recognize self-antigens under conditions (eg, cell injury) in which the self-tissue might elaborate immune-activating endogenous danger signals. Uric acid (UA) is an endogenous danger signal recently identified to be released from dying cells. Prior work has shown that UA activates immune effectors of both the(More)
Recent studies have shown the importance of helper CD4 T cells in initiating and sustaining tumor-specific CD8 T-cell immunity. This has paved the way for identifying MHC class II epitopes that could be incorporated into class I-based vaccines. In this study, the goal was to identify an HLA-DR-degenerate epitope pool derived from insulin-like growth factor(More)
Patients with HER-2/neu-expressing breast cancer remain at risk for relapse following standard therapy. Vaccines targeting HER-2/neu to prevent relapse are in various phases of clinical testing. Many vaccines incorporate the HER-2/neu HLA-A2-binding peptide p369-377 (KIFGSLAFL), because it has been shown that CTLs specific for this epitope can directly kill(More)
PURPOSE Over the past two decades, there has been significant interest in targeting HER-2/neu in immune-based approaches for the treatment of HER-2/neu+ cancers. For example, peptide vaccination using a CD8 T cell-activating HER-2/neu epitope (amino acids 369-377) is an approach that is being considered in advanced phase clinical trials. Studies have(More)
CD4 T cells are important for anti-tumor immune responses. Aside from their role in the activation of CD8 T cells, CD4 T cells also mediate anti-tumor immune responses by recruiting innate immune effectors into the tumor microenvironment. Thus, the search for strategies to boost CD4 T cell immunity is an active area of research. Our goal in this study was(More)
  • 1