Courtney K Burrows

Learn More
The advent of induced pluripotent stem cells (iPSCs) revolutionized human genetics by allowing us to generate pluripotent cells from easily accessible somatic tissues. This technology can have immense implications for regenerative medicine, but iPSCs also represent a paradigm shift in the study of complex human phenotypes, including gene regulation and(More)
Induced pluripotent stem cells (iPSCs) are an essential tool for studying cellular differentiation and cell types that are otherwise difficult to access. We investigated the use of iPSCs and iPSC-derived cells to study the impact of genetic variation on gene regulation across different cell types and as models for studies of complex disease. To do so, we(More)
Fertility traits in humans are heritable, however, little is known about the genes that influence reproductive outcomes or the genetic variants that contribute to differences in these traits between individuals, particularly women. To address this gap in knowledge, we performed an unbiased genome-wide expression quantitative trait locus (eQTL) mapping study(More)
  • 1