Courtney A. Hill

Learn More
Hypoxia ischemia (HI; reduced blood oxygenation and/or flow to the brain) represents one of the most common injuries for both term and preterm/very low birth weight (VLBW) infants. These children experience elevated incidence of cognitive and/or sensory processing disabilities, including language based learning disabilities. Clinical data also indicate more(More)
Developmental malformations of neocortex-including microgyria, ectopias, and periventricular nodular heterotopia (PNH)-have been associated with language learning impairments in humans. Studies also show that developmental language impairments are frequently associated with deficits in processing rapid acoustic stimuli, and rodent models have linked(More)
Auditory temporal processing deficits have been suggested to play a causal role in language learning impairments, and evidence of cortical developmental anomalies (microgyria (MG), ectopia) has been reported for language-impaired populations. Rodent models have linked these features, by showing deficits in auditory temporal discrimination for rats with(More)
Clinical findings show that male infants with hypoxic-ischemic injury (HI) fare more poorly than matched females on cognitive outcomes. Rodent models of neonatal hypoxia-ischemia support this difference, with data showing that perinatal brain injury leads to long-term behavioral deficits primarily in male rodents and in female rodents treated with early(More)
Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral(More)
The main objective of phase II clinical trials is to estimate treatment efficacy on a relatively small number of patients in order to decide whether the treatment ought to be studied in large-scale comparative trials. They play a key role in the drug development process, since the results determine whether or not to proceed to phase III trials. Multistage(More)
Neocortical neuronal migration anomalies such as microgyria and heterotopia have been associated with developmental language learning impairments in humans, and rapid auditory processing deficits in rodent models. Similar processing impairments have been suggested to play a causal role in human language impairment. Recent data from our group has shown(More)
Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full term birth related complications. HI injury often results in learning and processing deficits that reflect widespread damage to an extensive range of cortical and sub-cortical brain structures. Further, inflammation has been implicated in the long-term progression and(More)
Hypoxia ischemia (HI; reduced blood oxygenation and/or flow to the brain) represents one of the most common injuries for both term and preterm/very low birth weight (VLBW) infants. These children experience elevated incidence of cognitive and/or sensory processing disabilities, including language based learning disabilities. Clinical data also indicate more(More)
Sir-In a French case-control study of breast cancer (Le et al., 1984), we interviewed as controls (nonmalignant disease or no disease) 403 women aged 25 to 45 years in eight French hospitals and clinics during the period 1981-1984. All these women already had an experience of sexual intercourse. The year of birth was strongly associated with the main(More)
  • 1