Costantino Creton

Learn More
Geckos owe their remarkable stickiness to millions of dry, hard setae on their toes. In this study, we discovered that gecko setae stick more strongly the faster they slide, and do not wear out after 30,000 cycles. This is surprising because friction between dry, hard, macroscopic materials typically decreases at the onset of sliding, and as velocity(More)
We study pattern formation during tensile deformation of confined viscoelastic layers. The use of a model system [poly(dimethylsiloxane) with different degrees of cross-linking] allows us to go continuously from a viscous liquid to an elastic solid. We observe two distinct regimes of fingering instabilities: a regime called "elastic" with interfacial crack(More)
A carefully controlled, custom-built adhesion testing device was developed which allows a precise, short dwell time on the order of milliseconds to be applied during a contact adhesion experiment. The dwell time dependence of the adhesive strength of crosslinked poly(dimethylsiloxane) (PDMS) in contact with glass and uncrosslinked styrene butadiene rubber(More)
Based on several significant examples, we analyse the adhesion mechanisms at soft polymer interfaces with a special emphasis first on the role of connector molecules, that is, polymer chains bound to the interface and which transmit stress through a stretching and extraction mechanism, and second on the necessary relay that must be taken by additional(More)
We study the time-dependent contact area as a viscoelastic solid is squeezed against a randomly rough substrate. Using a recently developed contact mechanics theory we study how the contact area depends on time and on the magnification zeta. Numerical results are presented for self-affine fractal surfaces, and applications to tack, rubber friction, and(More)
The effect of increasing confinement on soft elastic gel layers has been investigated and a means of analyzing the behavior of such systems has been developed. A probe tack test was used to study the behavior of thin elastic layers during interfacial debonding from a cylindrical glass indenter. For this gel-indenter system, confinement is defined as the(More)
Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by(More)
We have carried out systematic fracture experiments in a single edge notch geometry over a range of stretch rates on dual crosslink hydrogels made from polyvinyl alcohol chains chemically crosslinked with glutaraldehyde and physically crosslinked with borate ions. If the energy release rate necessary for crack propagation was calculated conventionally, by(More)
The adhesive properties of a material can be greatly affected simply by wrinkling its surface. We show the importance of selecting the wrinkle feature sizes (amplitude, b; and wavelength, λ) that complement the material-defined length scale related to the adhesion energy and modulus. A rigid circular cylindrical punch patterned with aligned wrinkles ranging(More)
We tested the adhesive response of polymer surfaces structured with arrays of cylindrical fibrils having diameters of 10-20 µm and aspect ratios 1-2.4. Fibrils had two different tip shapes of end-flaps and round edges. A preload-induced mechanical buckling instability of the fibrils was used to switch between the states of adhesion and non-adhesion.(More)