Corrado Spinella

  • Citations Per Year
Learn More
We report the synthesis, the structural and optical characterization of CdSe/CdS/ZnS "double shell" nanorods and their exploitation in cell labeling experiments. To synthesize such nanorods, first "dot-in-a-rod" CdSe(dot)/CdS(rod) core/shell nanocrystals were prepared. Then a ZnS shell was grown epitaxially over these CdSe/CdS nanorods, which led to a(More)
Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization(More)
We demonstrate the possibility of producing Au/SiO(2) core-shell nanoparticles by nanosecond laser irradiation of thin (5 and 20 nm) Au films on Si. The Au/Si eutectic reaction and dewetting process caused by the fast melting and solidification dynamics induced by the nanosecond laser irradiations are investigated as the origin of the formation of(More)
The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr-Au, 3×3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3(More)
The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are(More)
A modification of Wieland's enzymatic procedure for glycerol analysis is presented. It is simple and precise, and readily applicable to the routine analysis of plasma and tissue glycerol and triglycerides. Optimal precision is obtained in samples containing 0.003-0.400 micromole of glycerol per ml, which in this method is equivalent to plasma levels of(More)
We implemented a low-temperature approach to fabricate efficient photoanodes for dye-sensitized solar cells, which combines three different nanoarchitectures, namely, a highly conductive and highly transparent AZO film, a thin TiO2-blocking layer, and a mesoporous TiO2 nanorod-based working electrode. All the components were processed at T≤200°C. Both the(More)
The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up(More)
We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1-5 nm) arising from the Thornton's conditions and an extra-rods meso-porosity (10-50 nm) originating from the spatial separation of the(More)
We investigate the degradation path of MAPbI3 (MA=methylammonium) films over flat TiO2 substrates at room temperature by means of X-ray diffraction, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The degradation dynamics is found to be similar in air and under vacuum conditions, which(More)