Corrado Corti

Learn More
Group II metabotropic glutamate receptors (mGluRs) comprise the mGluR2 and mGluR3 subtypes, the activation and modulation of which has been suggested to be beneficial for treating schizophrenia. Genetic association studies suggest limited association between mGluR2 and schizophrenia but some association between mGluR3 and schizophrenia. Conversely,(More)
Low-threshold (T-type) Ca(2+) channels encoded by the Ca(V)3 genes endow neurons with oscillatory properties that underlie slow waves characteristic of the non-rapid eye movement (NREM) sleep EEG. Three Ca(V)3 channel subtypes are expressed in the thalamocortical (TC) system, but their respective roles for the sleep EEG are unclear. Ca(V)3.3 protein is(More)
Evidence has accumulated over the past years that dysregulation of glutamatergic neurotransmission maybe implicated in the pathophysiology of schizophrenia. Glutamate acts on two major classes of receptors: ionotropic receptors, which are ligand-gated ion channels, and metabotropic receptors (mGluRs), coupled to heterotrimeric G-proteins. Although several(More)
Dual metabotropic glutamate 2/3 (mGlu2/3) receptor agonists have been examined with success in the clinic with positive proof of efficacy in several tests of anxiety and schizophrenia. Moreover, a large body of evidence has accumulated that these drugs have significant neuroprotective potential. An important discussion in the field deals with dissecting(More)
Neuropeptide S (NPS) has been recently recognized as the endogenous ligand for the previous orphan G-protein-coupled receptor GPR154, now referred to as the NPS receptor (NPSR). The NPS-NPSR receptor system regulates important biological functions such as sleeping/wakening, locomotion, anxiety, and food intake. To collect information on the mechanisms of(More)
BACKGROUND Metabotropic glutamate receptors (mGlus) may be involved in the pathophysiology of schizophrenia. Group II mGlus (mGlu2 and mGlu3) have attracted considerable interest since the development of potent specific agonists that exhibit atypical antipsychotic-like activity and reports of a genetic association between the mGlu3 gene and schizophrenia.(More)
Medication development for cocaine-addicted patients is difficult, and many promising preclinical candidates have failed in clinical trials. One reason for the difficulty in translating preclinical findings to the human condition is that drug testing is typically conducted in behavioral procedures in which animals do not show addiction-like traits.(More)
All forms of brain injury induce activation of astrocytes, although different types of injury induce different astrocytic responses. Activated astrocytes are characterised by hypertrophy, proliferation and increased expression of glial fibrillary acidic protein (GFAP). However, neither the process by which astrocytes become reactive nor the consequences are(More)
The metabotropic glutamate receptor 5 (mGluR5) has a discrete tissue expression mainly limited to neural cells. Expression of mGluR5 is developmentally regulated and undergoes dramatic changes in association with neuropathological disorders. We report the complete genomic structure of the mGluR5 gene, which is composed of 11 exons and encompasses(More)
Metabotropic glutamate (mGlu) receptors have been considered potential targets for the therapy of experimental parkinsonism. One hypothetical advantage associated with the use of mGlu receptor ligands is the lack of the adverse effects typically induced by ionotropic glutamate receptor antagonists, such as sedation, ataxia, and severe learning impairment.(More)