Learn More
BACKGROUND The neuronal basis of persistent developmental stuttering is unknown. The disorder could be related to a reduced left hemisphere dominance, which functional neuroimaging data suggest might lead to right hemispheric motor and premotor overactivation. Alternatively, the core deficit underlying stuttering might be located in the speech-dominant left(More)
Built on an analogy between the visual and auditory systems, the following dual stream model for language processing was suggested recently: a dorsal stream is involved in mapping sound to articulation, and a ventral stream in mapping sound to meaning. The goal of the study presented here was to test the neuroanatomical basis of this model. Combining(More)
Previous functional imaging studies of chronic stroke patients with aphasia suggest that recovery of language occurs in a pre-existing, bilateral network with an upregulation of undamaged areas and a recruitment of perilesional tissue and homologue right language areas. The present study aimed at identifying the dynamics of reorganization in the language(More)
Language acquisition in humans relies on abilities like abstraction and use of syntactic rules, which are absent in other animals. The neural correlate of acquiring new linguistic competence was investigated with two functional magnetic resonance imaging (fMRI) studies. German native speakers learned a sample of 'real' grammatical rules of different(More)
Converging evidence from neuroimaging studies and computational modelling suggests an organization of language in a dual dorsal-ventral brain network: a dorsal stream connects temporoparietal with frontal premotor regions through the superior longitudinal and arcuate fasciculus and integrates sensorimotor processing, e.g. in repetition of speech. A ventral(More)
Cognitive functions are organized in distributed, overlapping, and interacting brain networks. Investigation of those large-scale brain networks is a major task in neuroimaging research. Here, we introduce a novel combination of functional and anatomical connectivity to study the network topology subserving a cognitive function of interest. (i) In a given(More)
The medial temporal lobe (MTL) has been associated with declarative learning of flexible relational rules and the basal ganglia with implicit learning of stimulus-response mappings. It remains an open question of whether MTL or basal ganglia are involved when learning flexible relational contingencies without awareness. We studied learning of an explicit(More)
In the present study, we identified the most probable trajectories of point-to-point segregated connections between functional attentional centers using a combination of functional magnetic resonance imaging and a novel diffusion tensor imaging-based algorithm for pathway extraction. Cortical regions activated by a visuospatial attention task were(More)
BACKGROUND AND PURPOSE The purpose of this research was to investigate the impact of lesion location on motor excitability and motor performance. METHODS We studied patients with pure motor strokes in 4 different brain areas: motor cortex lesions (n=7), striatocapsular lesions (n=13), lacunar lesions of the internal capsule (n=13), and paramedian pontine(More)
We used diffusion tensor imaging (DTI) to assess Wallerian degeneration of the pyramidal tract within the first 2 weeks after ischemic stroke, and correlated the extent of Wallerian degeneration with the motor deficit. Nine patients with middle cerebral artery stroke were examined 2-16 days after stroke by DTI and T2-weighted MRI. We measured fractional(More)