Cornelis J. Elferink

Learn More
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor in eukaryotic cells that alters gene expression in response to the environmental contaminant 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD). In 5L hepatoma cells, TCDD induces a G1 cell cycle arrest through a mechanism that involves the AhR. The retinoblastoma tumor suppressor(More)
The aryl hydrocarbon receptor (AhR) belongs to the basic helix-loop-helix/periodicity/AhR nuclear translocator/simple-minded (Per-Arnt-Sim) family of transcription factors that regulate critical functions during development and tissue homeostasis. Within this family, the AhR is the only member conditionally activated in response to ligand binding, typified(More)
The liver is the only solid organ that can respond to major tissue loss or damage by regeneration to restore liver biomass. The aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can disrupt the regenerative process, as evidenced by suppression of DNA synthesis in rat primary hepatocytes in culture and in vivo liver(More)
The aryl hydrocarbon receptor (AhR) was implicated as a mediator of xenobiotic toxicity over three decades ago. Although a complete picture continues to elude us, investigations by many laboratories during the ensuing period have revealed much about AhR biology in normal physiological processes, as well as the toxicities induced by the dioxins and related(More)
In hepatocyte-derived cell lines, either loss of aryl hydrocarbon receptor (AhR) function or treatment with a persistent AhR agonist such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can disrupt G1 phase cell cycle progression. The present study used liver regeneration to explore mechanistically how AhR activity modulates hepatocyte proliferation in vivo.(More)
We have employed a combination of gel retardation, protein-DNA cross-linking, and protein-protein cross-linking techniques to further examine the 2,3,7,8-tetrachlorodibenzo-p- dioxin-(TCDD-) dependent changes in the Ah receptor that result in a DNA-binding conformation. Gel retardation analysis of DNA-Sepharose chromatographic fractions of rat hepatic(More)
The aryl hydrocarbon receptor (AhR) is a mediator of xenobiotic toxicity, best recognized for conveying the deleterious effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. The AhR functions as a ligand-activated transcription factor that binds to a canonical xenobiotic response element (XRE) in association with the heterodimerization partner,(More)
Liver homeostasis is achieved by the removal of diseased and damaged hepatocytes and their coordinated replacement to maintain a constant liver cell mass. Cirrhosis, viral hepatitis, and toxic drug effects can all trigger apoptosis in the liver as a means of removing the unwanted cells, and the Fas "death receptor" pathway comprises a major physiological(More)
A quantitative reverse transcription polymerase chain reaction (RT-PCR) assay was developed to amplify a region of the CYP1A1 heterogeneous nuclear RNA (hnRNA) transcript encompassing the first intron-exon boundary. The RT-PCR protocol uses a CYP1A1 recombinant RNA internal standard identical to the target hnRNA except for an engineered unique internal(More)
The aryl hydrocarbon receptor (AhR) transcription factor is increasingly recognized as functioning in cell cycle control. Several recent reports have shown that AhR activity in the absence of exogenous agonists or presence of the prototypical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin can affect G1 phase progression in cultured cells. Serum release of(More)